Áp dụng BĐT AM-GM:
\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)
\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)
\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)
\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)
\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Cộng vế:
\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)