Cho các số thực dương x,y thỏa mãn x + \(\dfrac{1}{y}\) ≤ 1 .Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho x,y,z là các số thực dương thỏa mãn x + y +z ≥ 2019 . Tìm giá trị nhỏ nhất của biểu thức T = \(\dfrac{x^2}{x+\sqrt{yz}}\) + \(\dfrac{y^2}{y+\sqrt{zx}}\) + \(\dfrac{z^2}{z+\sqrt{xy}}\)
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
cho x,y là hai số thực dương thỏa mãn x+y≤xy.Tìm giá trị lớn nhất của biểu thức M=\(\dfrac{1}{2x^2+3y^2}+\dfrac{1}{3x^2+2y^2}\)
Cho x,y dương thỏa mãn : \(xy+1\le y\).Tìm giá trị nhỏ nhất của biểu thức :
\(Q=\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
\(\text{Cho 3 số dương x, y, z thỏa mãn x+y+z=2 tìm giá trị nhỏ nhất của biểu thức A =}\dfrac{2}{x}+\dfrac{8}{9y}+\dfrac{18}{25z}\)
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Cho các số thực dương x,y > 1 . Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)