Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy≠1. Tìm giá trị lớn nhất của
M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
Cho hai số dương x, y thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=2\). Tìm giá trị nhỏ nhất của xy
Tìm điều kiện của x và y để biểu thức sau có giá trị dương: \(A=\left(\dfrac{x^2-xy}{y^2+xy}-\dfrac{x^2-y^2}{x^2+xy}\right):\left(\dfrac{y^2}{x^3-xy^2}+\dfrac{1}{x-y}\right)\)
cho các số dương x,y thỏa mãn x+y=1
tìm giá trị nhỏ nhất của P=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
Cho x,y > 0 thỏa mãn x+y=1 Tìm GTNN của P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{4}{xy}\)
Cho x,y > 0 thỏa mãn \(\dfrac{1}{x^2}\) + \(\dfrac{1}{y^2}\) = \(\dfrac{1}{2}\)
Tìm GTTN của B = x + y + xy + 2023
Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)