A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
Cho hai số dương x, y thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=2\). Tìm giá trị nhỏ nhất của xy
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy≠1. Tìm giá trị lớn nhất của
M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy\(\ne\)1. Tìm giá trị lớn nhất của M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Cho x,y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(B=2020+xy\)
cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức A=x^3/(1+y)+y^3/(1+x)
cho các số dương x,y thỏa mãn x+y=1
tìm giá trị nhỏ nhất của P=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)