Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Yết
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Hồng Phúc
5 tháng 9 2021 lúc 10:37

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Hồng Phúc
5 tháng 9 2021 lúc 10:41

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

Hồng Phúc
5 tháng 9 2021 lúc 10:50

3.

\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)

...

Kinder
Xem chi tiết
Hồng Phúc
31 tháng 5 2021 lúc 23:41

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 7:42

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:13

\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)

\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)

\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)

Brake Hữu
Xem chi tiết
Nguyễn Đắc Định
8 tháng 4 2018 lúc 10:54

\(VT=\dfrac{\sin x}{\sin x-cosx}-\dfrac{cosx}{sinx+cosx}\\ =\dfrac{sin^2x+\sin x\cos x-\sin x\cos x+\cos^2x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\\ =\dfrac{1}{\sin^2x-\cos^2x}\)

\(VP=\dfrac{1+\cot^2x}{1-\cot^2}\\ =\left(1+\cot^2x\right)\cdot\dfrac{1}{1-\cot^2x} \\=\dfrac{1}{\sin^2x}\cdot\dfrac{1}{1-\cot^2x}\\ =\dfrac{1}{\sin^2x-\sin^2x\cdot\cot^2x}\\ =\dfrac{1}{\sin^2x-\cos^2x}=VT\)

yuki
Xem chi tiết
Hồng Phúc
24 tháng 8 2021 lúc 14:46

1.

\(8sinx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)

\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}}{2cosx}+\dfrac{1}{2sinx}\)

\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}sinx+cosx}{sin2x}\)

\(\Leftrightarrow4sinx.sin2x=\sqrt{3}sinx+cosx\)

\(\Leftrightarrow2cosx-2cos3x=\sqrt{3}sinx+cosx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=2cos3x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos3x\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\pm3x+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}-k\pi\\x=-\dfrac{\pi}{12}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Hồng Phúc
24 tháng 8 2021 lúc 15:00

2.

ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(sinx+\sqrt{3}cosx=\dfrac{1}{cosx}\)

\(\Leftrightarrow2sinx.cosx+2\sqrt{3}cos^2x-\sqrt{3}=2-\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=1-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{2-\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\\2x+\dfrac{\pi}{3}=\pi-arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\\x=\dfrac{\pi}{3}-\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\end{matrix}\right.\)

quangduy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2019 lúc 22:09

Giả sử các biểu thức đã cho đều xác định

a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)

b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)

\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)

c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)

\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)

Nguyễn Việt Lâm
2 tháng 3 2019 lúc 22:17

d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)

\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)

e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)

\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)

\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)

f/ Bạn ghi đề sai à?

NGUYỄN MINH HUY
28 tháng 1 2020 lúc 10:35

câu f sai đề rồi

Khách vãng lai đã xóa
M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:36

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:38

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:41

c.

\(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

Câu này đề đúng không nhỉ? Nhìn thấy có vẻ không đúng lắm

d.

\(cosx-sinx=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)