Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:30

\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=-2\)

\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:46

\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=2\)

\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

John John
Xem chi tiết
Phía sau một cô gái
21 tháng 8 2021 lúc 9:25

\(x^2-4x+7\) 

⇔ \(\left(x^2-4x+4\right)+3\)

⇔  \(\left(x-2\right)^2+3\)

Vì \(\left(x-2\right)^2\ge0\) ⇒ \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x =2  

Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 14:40

\(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=2

phan lê hằng
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 2 2021 lúc 13:07

\(F=-x^2+2.x.2-4+5=-\left(x^2-4x+4\right)+5\)

\(=-\left(x-2\right)^2+5\)

Thấy : \(\left(x-2\right)^2\ge0\)

\(\Rightarrow5-\left(x-2\right)^2\le5\)

Vậy MaxF = 5 tại x = 2 .

annppt
Xem chi tiết
An Thy
9 tháng 6 2021 lúc 19:42

\(A=\dfrac{3x^2+12x+17}{x^2+4x+5}=\dfrac{3\left(x^2+4x+5\right)+2}{x^2+4x+5}=3+\dfrac{2}{x^2+4x+5}\)

Ta có: \(x^2+4x+5=x^2+4x+4+1=\left(x+2\right)^2+1\ge1\)

\(\Rightarrow\dfrac{2}{x^2+4x+5}\le2\Rightarrow A\le3+2=5\)

\(\Rightarrow A_{max}=5\) khi \(x=-2\)

missing you =
9 tháng 6 2021 lúc 19:36

bạn viết đề có đúng không đấy

 

missing you =
9 tháng 6 2021 lúc 19:40

đề thế này á?

\(A=3x^2+12x+\dfrac{17}{x^2}+4x+5\)

Lương Đại
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 11 2021 lúc 8:55

\(A=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\\ A_{min}=-3\Leftrightarrow x=2\)

Biểu thức A ko có max

ngọc quỳnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2019 lúc 10:05

Chọn D

Trần Minh Duyên
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
1 tháng 10 2023 lúc 22:10

`#3107.101107`

`A = -x^2 + 4x - 8`

`= -(x^2 - 4x + 8)`

`= - [ (x^2 - 2*x*2 + 2^2) + 4]`

`= - [ (x - 2)^2 + 4]`

`= -(x-2)^2 - 4`

Vì `-(x - 2)^2 \le 0` `AA` `x`

`=> -(x - 2)^2 - 4 \ge 0` `AA` `x`

Vậy, GTLN của A là `-4` khi `(x - 2)^2 = 0`

`<=> x - 2 = 0`

`<=> x = 2.`

Kiều Vũ Linh
1 tháng 10 2023 lúc 22:10

A = -x² + 4x - 8 

= -(x² - 4x + 8)

= -(x² - 4x + 4 + 4)

= -[(x - 2)² + 4]

= -(x - 2)² - 4

Do (x - 2)² ≥ 0 với mọi x R

⇒ -(x - 2)² ≤ 0 với mọi x ∈ R

⇒ -(x - 2)² - 4 ≤ -4 với mọi x ∈ R

Vậy GTLN của A là -4 khi x = 2