41, giai pt:
\(\frac{sin^22x+cos^42x+1}{\sqrt{sinx.cosx}}\)
bài 1: giải pt
a,\(\frac{cos\left(cos+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
b,\(\frac{sin^22x-2}{sin^22x-4cos^2x}=tan^2x\)
c, \(\frac{1+sin2x+cos2x}{1+cot^2x}=\sqrt{2}sinxsin2x\)
d, \(2tanx+cotx=2sin2x+\frac{1}{sin2x}\)
Giải các phương trình :
1) \(\frac{\sin^4x+\cos^4x}{\sin2x}=\frac{1}{2}\left(\tan x+\cot2x\right)\)
2) \(\frac{1}{\sin x}+\frac{1}{\sin\left(x-\frac{3\pi}{2}\right)}=4\sin\left(\frac{7\pi}{4}-x\right)\)
3)\(2\left(\cos^42x-\sin^42x\right)+\cos8x-\cos4x=0\)
4)\(\frac{\sin^4x+\cos^4x}{5\sin2x}=\frac{1}{2}\cot2x-\frac{1}{8\sin2x}\)
5)\(\sin^4x+\cos^4x-3\sin2x+\frac{5}{2}\sin^22x=0\)
giải pt
a, \(\sin^2x+\sin^22x+\sin^23x=\dfrac{3}{2}\)
b. \(\cos^2x+\sin^22x+\cos^23x=1\)
c,\(\sin5x+2\cos^2x=1\)
d,\(1+\tan x=2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\)
e,\(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
giải pt
a) \(sin^2x+2sin^22x+sin^23x-2=0\)
b) \(2cosx.cos\left(x+\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)
c) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
d) \(1+cot2x=\frac{1-cos2x}{sin^22x}\)
a/
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0\)
\(\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0\)
\(\Leftrightarrow1-cos4x.cos2x-2cos^22x=0\)
\(\Leftrightarrow2cos^22x-1+cos4x.cos2x=0\)
\(\Leftrightarrow cos4x+cos4x.cos2x=0\)
\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)
\(\Leftrightarrow cos2x.cos\left(\frac{\pi}{3}\right)-sin2x.sin\left(\frac{\pi}{3}\right)+\frac{1}{2}+\sqrt{3}sin2x=1\)
\(\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)
\(\Leftrightarrow3+5cosx=1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
Giải phương trình:
1.\(cos^3x.cos3x+sin^3x.sin3x=\frac{\sqrt{2}}{4}\)
2.\(cos^34x=cos^3x.cos3x+sin^3x.sin3x\)
3.\(cos^2x-4sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right)+2=0\)
4.\(sin^4x+sin^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)
5.\(sin^6x+cos^6x=\frac{5}{6}\left(sin^4x+cos^4x\right)\)
6.\(sin^6x+cos^6x+\frac{1}{2}sinx.cosx=0\)
7.\(\frac{1}{2}\left(sin^4x+cos^4x\right)=sin^2x.cos^2x+sinx.cosx\)
8.\(sin^6x+cos^6x-3cos8x+2=0\)
9.\(sin^4x+cos^4x-2\left(sin^6\frac{x}{2}+cos^6\frac{x}{2}\right)+1=0\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
1.
\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)
\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)
\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)
\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)
\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)
\(\Leftrightarrow4cos^32x=\sqrt{2}\)
\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)
Giải phương trình:
1, \(3\sin^22x+\cos^22x=6\sin x.\cos x\)
2, \(3\cos^2x+4\sin\left(\frac{3\pi}{2}-x\right)+1=0\)
3, \(\cos^22x+2\sqrt{3}\cos x.\sin x+\sin2x=1+\sqrt{3}\)
4, \(4\cos2x+5\sin x=4\sin3x+5\)
Mọi người giúp mình với ạ!!! Mình cảm ơn nhiều!!!
1.
\(\Leftrightarrow3sin^22x+1-sin^22x=3sin2x\)
\(\Leftrightarrow2sin^22x-3sin2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)
\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)
\(\Leftrightarrow3cos^2x-4cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)
\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)
\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
giải các pt
a) \(4sin^3x+3\sqrt{2}sin2x=8sinx\)
b) \(7cosx=4cos^3x+4sin2x\)
c) \(tanx+cotx=5-\frac{3}{sin^22x}\)
d) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
e) \(2\left(cos^2x+cos^22x+cos^23x\right)=3\left(1+cosx.cos4x\right)\)
a/
\(\Leftrightarrow4sin^3x+6\sqrt{2}sinx.cosx-8sinx=0\)
\(\Leftrightarrow2sinx\left(2sin^2x+3\sqrt{2}cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\2sin^2x+3\sqrt{2}cosx-4=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(1-cos^2x\right)+3\sqrt{2}cosx-4=0\)
\(\Leftrightarrow-2cos^2x+3\sqrt{2}cosx-2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\sqrt{2}>1\left(l\right)\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)
b/
\(\Leftrightarrow4cos^3x+8sinx.cosx-7cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x+8sinx-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\4cos^2x+8sinx-7=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(1-sin^2x\right)+8sinx-7=0\)
\(\Leftrightarrow-4sin^2x+8sinx-3=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ; ...
\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}-5+\frac{3}{sin^22x}=0\)
\(\Leftrightarrow\frac{sin^2x+cos^2x}{sinx.cosx}-5+\frac{3}{sin^22x}=0\)
\(\Leftrightarrow\frac{3}{sin^22x}+\frac{2}{sin2x}-5=0\)
Đặt \(\frac{1}{sin2x}=t\Rightarrow3t^2+2t-5=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\end{matrix}\right.\)
10, giải pt
\(sin^8x+cos^8x=\frac{17}{16}cos^22x\)
1.giải pt \(\left(1+\tan x\right)\cos^3x+\left(1+\cot x\right)\sin^3x=\sqrt{2\sin2x}\)
2.tìm các nghiệm trong khoảng \(\left(-\pi;\pi\right)\) của phương trình
\(2\sin\left(3x+\frac{\pi}{4}\right)=\sqrt{1+8\sin2x\cos^22x}\)
Bài 1:
ĐK : sinx cosx > 0
Khi đó phương trình trở thành
sinx+cosx=\(2\sqrt{\sin x\cos x}\)
ĐK sinx + cosx >0 → sinx>0 ; cosx>0
Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Vậy ...
Bài 2:
ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)
Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :
\(x=\frac{\pi}{12}\) (TMĐK)
\(x=-\frac{11\pi}{12}\) (KTMĐK)
\(x=\frac{5\pi}{12}\) (KTMĐK)
\(x=-\frac{7\pi}{12}\) (TMĐK)
Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\) và \(x=-\frac{7\pi}{12}\)