# Chương 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

giải pt

a) $sin^2x+2sin^22x+sin^23x-2=0$

b) $2cosx.cos\left(x+\frac{\pi}{3}\right)+\sqrt{3}sin2x=1$

c) $5\left(1+cosx\right)=2+sin^4x-cos^4x$

d) $1+cot2x=\frac{1-cos2x}{sin^22x}$

25 tháng 8 2020 lúc 21:48

a/

$\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0$

$\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0$

$\Leftrightarrow1-cos4x.cos2x-2cos^22x=0$

$\Leftrightarrow2cos^22x-1+cos4x.cos2x=0$

$\Leftrightarrow cos4x+cos4x.cos2x=0$

$\Leftrightarrow cos4x\left(cos2x+1\right)=0$

$\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.$

25 tháng 8 2020 lúc 21:51

b/

$\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}\right)+\sqrt{3}sin2x=1$

$\Leftrightarrow cos2x.cos\left(\frac{\pi}{3}\right)-sin2x.sin\left(\frac{\pi}{3}\right)+\frac{1}{2}+\sqrt{3}sin2x=1$

$\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}$

$\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}$

$\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.$

25 tháng 8 2020 lúc 21:56

c/

$\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)$

$\Leftrightarrow3+5cosx=sin^2x-cos^2x$

$\Leftrightarrow3+5cosx=1-cos^2x-cos^2x$

$\Leftrightarrow2cos^2x+5cosx+2=0$

$\Leftrightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.$

25 tháng 8 2020 lúc 22:00

d/

ĐKXĐ: $sin2x\ne0$ $\Leftrightarrow2x\ne k\pi$

$\Leftrightarrow1+\frac{cos2x}{sin2x}=\frac{1-cos2x}{sin^22x}$

$\Leftrightarrow sin^22x+sin2x.cos2x=1-cos2x$

$\Leftrightarrow sin^22x-1+sin2x.cos2x+cos2x=0$

$\Leftrightarrow-cos^22x+sin2x.cos2x+cos2x=0$

$\Leftrightarrow cos2x\left(sin2x-cos2x+1\right)=0$

$\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x-cos2x=-1\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.$

$\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\left(l\right)\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.$

Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết