Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thanh luan
Xem chi tiết
Thắng Nguyễn
24 tháng 5 2016 lúc 6:58

x2 - 2xy + 2y2 - 2x + 6y + 13 = 0 

<=> x2 - 2x(y + 1) + 2y2 + 6y + 13 = 0 

<=> x2 - 2x(y + 1) + (y + 1)2 + y2 + 4y + 12 = 0 

<=> (x - y - 1)2 + (y + 1)2 + (y + 2)2 + 8 = 0 

Vô lí do VT > 0 vs mọi x; y 

=> Ko tìm đc gtri của N

bo may cat dau moi
17 tháng 2 2021 lúc 19:14

khongg lam maa ddoi co an thi an cai lon me may

Khách vãng lai đã xóa
Andrea
Xem chi tiết
Nguyễn Thị Yến
Xem chi tiết
santa
29 tháng 12 2020 lúc 12:53

A= x2+2y2-2xy-2x-2y+1015

A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010 

A = [x2 - 2x(y + 1) + (y+1)2 ]  + (y-2)2 + 1010

A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Đặng Phan Nhật Huy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 19:45

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

Nguyễn Việt Lâm
13 tháng 1 lúc 19:50

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

Lan Anh Vũ Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 15:17

Bạn nên sửa lại đề là tìm GTNN

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy GTNN của A là 15

Nguyễn Văn Khang
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 15:40

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

ILoveMath
16 tháng 11 2021 lúc 15:41

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Nhi Phí
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 9:53

Lời giải:

a. $x^2+y^2+4y+13-6x$

$=(x^2-6x+9)+(y^2+4y+4)$

$=(x-3)^2+(y+2)^2$

b.

$4x^2-4xy+1+2y^2-2y$

$=(4x^2-4xy+y^2)+(y^2-2y+1)$

$=(2x-y)^2+(y-1)^2$

c.

$x^2-2xy+2y^2+2y+1$

$=(x^2-2xy+y^2)+(y^2+2y+1)$

$=(x-y)^2+(y+1)^2$

Nhan Thanh
28 tháng 8 2021 lúc 9:56

a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 15:06

a: \(x^2-6x+y^2+4y+13\)

\(=x^2-6x+9+y^2+4y+4\)

\(=\left(x-3\right)^2+\left(y+2\right)^2\)

b: \(4x^2-4xy+1+2y^2-2y\)

\(=4x^2-4xy+y^2+y^2-2y+1\)

\(=\left(2x-y\right)^2+\left(y-1\right)^2\)

c: \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2xy+y^2+y^2+2y+1\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

Trần Thị Ngọc Như
Xem chi tiết
Nguyễn Nhật Minh
25 tháng 12 2015 lúc 11:21

\(x^2+2y^2-2xy+x-2y+1=0\)

\(4x^2+8y^2-8xy+4x-8y+4=0\)

\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)

\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)

\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)

=> KL...........

nguyễn thanh nga
22 tháng 12 2016 lúc 21:04

vô lí

Lý Ngọc Mai
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 16:16

\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)