Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Litchi Nguyễn
Xem chi tiết
nhung
6 tháng 9 2016 lúc 17:16

Mk gợi ý qua cho bn r bn tự lm tiếp nháhaha

1)ĐK:\(x\in\left[-2;2\right]\)

Dễ thấy :y=0 không là nghiệm của hệ

Chia cả 2 vế của pt(2) cho \(y^3\)ta đc:

\(\left(5-x\right)\sqrt{2-x}=\frac{8}{y^3}+\frac{6}{y}\)\(\Leftrightarrow\left(2-x\right)\sqrt{2-x}+3\sqrt{2-x}=\left(\frac{2}{y}\right)^3+3\left(\frac{2}{y}\right)\)

Xét hàm số:\(f\left(t\right)=t^3+3t\)

\(f'\left(t\right)=3t^2+3>0\)\(\Rightarrow\)hàm số liên tục và đồng biến trên R

\(\Rightarrow\sqrt{2-x}=\frac{2}{y}\)\(\Rightarrow y=\frac{2}{\sqrt{2-x}}\)

Thay vào pt(1) ta đc:

\(6\sqrt{2+x}+8\sqrt{4-x^2}=20-6x+12\sqrt{2-x}\)

\(\Leftrightarrow x=\frac{6}{5}\Rightarrow y=\sqrt{5}\)(t/m)

KL:...

Litchi Nguyễn
8 tháng 9 2016 lúc 20:16

Giúp mình hệ 2 vs ạ :))

Đặng Thị Bích Ngọc
5 tháng 8 2021 lúc 16:06

Các chị giỏi quá!👍👍

Khách vãng lai đã xóa
Kim Tuyến
Xem chi tiết
Thu Hồng
4 tháng 2 2022 lúc 22:29

 

Linh said that she was working in that restaurant.

Your younger brother goes to school by bike, doesn't he?

Some fresh flowers have been cut from the garden by my mother.

It's very wonderful to spend the weekend in the countryside.

I haven't seen my grandfather for five months.

Trần Kỳ Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 13:26

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc EAH=90 độ-goc ABC

góc ECB=90 độ-góc ABC

=>góc EAH=góc ECB

c: góc xAC=góc ABC

=>góc xAC=góc ADE

=>xy//DE

Đỗ Thị Minh Ngọc
25 tháng 3 2022 lúc 23:32

lỗi

ka nekk
25 tháng 3 2022 lúc 23:35

lỗi

Trần Thị Tú Anh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2021 lúc 18:33

Đường thẳng BC vuông góc AH nên nhận (1;-3) là 1 vtpt

Phương trình BC: \(1\left(x-2\right)-3\left(y+7\right)=0\Leftrightarrow x-3y-23=0\)

Do M thuộc CM nên tọa độ có dạng \(M\left(-2m-7;m\right)\)

M là trung điểm AB \(\Rightarrow A\left(-4m-16;2m+7\right)\)

Mà A thuộc AH nên:

\(3\left(-4m-16\right)+\left(2m+7\right)+11=0\Rightarrow m=-3\Rightarrow A\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(6;-8\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt \(\Rightarrow\) pt AB là...

C là giao điểm BC và CM nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+2y+7=0\\x-3y-23=0\end{matrix}\right.\) \(\Rightarrow C\left(5;-6\right)\Rightarrow\overrightarrow{BC}=...\Rightarrow\) phương trình BC

Nguyễn Trang
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 17:01

\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\\ =\dfrac{3\left(3-\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{6}}=\dfrac{\left(9-3\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{6}-18-6\sqrt{3}+6\sqrt{2}-9\sqrt{2}+6\sqrt{3}}{2}\\ =\dfrac{9\sqrt{6}-3\sqrt{2}-18}{2}\)

\(7,=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-2-\sqrt{3}\\ =\sqrt{3}+2+\sqrt{2}+1-2-\sqrt{3}=1+\sqrt{2}\)

\(10,\dfrac{1}{\sqrt{a}+\sqrt{a+2}}=\dfrac{\sqrt{a}-\sqrt{a+2}}{a-a-2}=\dfrac{\sqrt{a-2}-\sqrt{a}}{2}\)

Do đó \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{47}+\sqrt{49}}\)

\(=\dfrac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{49}-\sqrt{47}}{2}=\dfrac{-1+\sqrt{49}}{2}=\dfrac{7-1}{2}=3\)

ILoveMath
24 tháng 10 2021 lúc 17:01

10, \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{17}+\sqrt{19}}=\dfrac{\sqrt{1}-\sqrt{3}}{\left(\sqrt{1}+\sqrt{3}\right)\left(\sqrt{1}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+...+\dfrac{\sqrt{17}-\sqrt{19}}{\left(\sqrt{17}+\sqrt{19}\right)\left(\sqrt{17}-\sqrt{19}\right)}=\dfrac{1-\sqrt{3}+\sqrt{3}-\sqrt{5}+...+\sqrt{17}-\sqrt{19}}{-2}=-\dfrac{1-\sqrt{19}}{2}\)

Trần Thị Tú Anh 8B
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2020 lúc 20:35

Để pt có 2 nghiệm dương:

\(\left\{{}\begin{matrix}\Delta'=\left(m-3\right)^2-\left(m-1\right)\ge0\\x_1+x_2=-2\left(m-3\right)>0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7m+10\ge0\\m< 3\\m>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge5\\m\le2\end{matrix}\right.\\m< 3\\m>1\end{matrix}\right.\)

\(\Rightarrow1< m\le2\)

lmtaan_ 1342
Xem chi tiết
Hồng Phúc
12 tháng 10 2020 lúc 20:15

ĐKXĐ: \(x\ge\frac{1}{3}\)

\(x^2+5x=x\sqrt{3x-1}+\left(x+1\right)\sqrt{5x}\)

\(\Leftrightarrow2x^2+10x-2x\sqrt{3x-1}-2\left(x+1\right)\sqrt{5x}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{3x-1}+3x-1\right)+\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{5x}+5x\right]=0\)\(\Leftrightarrow\left(x-\sqrt{3x-1}\right)^2+\left(x+1-\sqrt{5x}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt{3x-1}=0\\x+1-\sqrt{5x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3x-1}\\x+1=\sqrt{5x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3x-1\\\left(x+1\right)^2=5x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1=0\\x^2-3x+1=0\end{matrix}\right.\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\left(tm\right)\)

Khách vãng lai đã xóa
heliooo
Xem chi tiết
Yeutoanhoc
1 tháng 3 2021 lúc 21:19

`(15-x)+(x-12)=7-(-5+x)`

`=>15-x+x-12=7+5-x`

`=>3=12-x`

`=>x=12-3`

`=>x=9`

Vậy `x=9`

NLT MInh
1 tháng 3 2021 lúc 21:20

(15-x)+(x-12) = 7-(-5+x)

<=>15-x+x-12=7+5-x

<=>3=12-x

<=>x=12-3=9

✟şin❖
1 tháng 3 2021 lúc 21:20

(15-x)+(x-12) = 7-(-5+x)

<=> 15-x +x -12 = 7 +5 -x 

<=> x = 12 +12 -15

<=> x =9