Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo
Xem chi tiết
Trên con đường thành côn...
29 tháng 7 2021 lúc 18:43

undefined

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 23:20

Ta có: \(\left(3xy^2+\dfrac{1}{3}x^2y\right)^3\)

\(=\left(3xy^2\right)^3+3\cdot\left(3xy^2\right)^2\cdot\dfrac{1}{3}x^2y+3\cdot3xy^2\cdot\left(\dfrac{1}{3}x^2y\right)^2+\left(\dfrac{1}{3}x^2y\right)^3\)

\(=27x^3y^6+9x^4y^5+x^5y^4+\dfrac{1}{27}x^6y^3\)

dịu nguyễn
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
4 tháng 2 2023 lúc 13:10

#\(N\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+1}{3}=\dfrac{y-2}{4}=\dfrac{z-1}{13}=\dfrac{2x+2-3.\left(y-2\right)+z-1}{3\cdot2-3.4+13}=\dfrac{2x+2-3y+6+z-1}{7}\)

\(=\dfrac{\left(2x-3y+z\right)+7}{7}=\dfrac{42+7}{7}=\dfrac{49}{7}=7\)

`->`\(\dfrac{x+1}{3}=7,\dfrac{y-2}{4}=7,\dfrac{z-1}{13}=7\) 

`->` \(x=20,y=30,z=92\)

 

Trần Gia Hân
4 tháng 2 2023 lúc 13:23

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

=(2x−3y+z)+77=42+77=497=7=(2x−3y+z)+77=42+77=497=7

Nguyễn Thảo
Xem chi tiết
Trên con đường thành côn...
29 tháng 7 2021 lúc 18:10

undefined

Edogawa Conan
29 tháng 7 2021 lúc 18:15

(2x+3y)3=8x3+36x2y+54xy2+27y3

Nguyễn Minh Hoàng
29 tháng 7 2021 lúc 18:17

\(\left(2x+3y\right)^3=8x^3+36x^2y+54xy^2+27y^3\)

Hoàng Nguyệt
Xem chi tiết
Nguyễn Trọng Chiến
16 tháng 1 2021 lúc 16:44

Mik thấy ở vế đầu tiên nó hình như bạn bị nhầm thì  phải :\(\dfrac{2X}{2X+Y}-\dfrac{3Y}{2X-Y}=1\)

Vân Nguyễn Thị
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 20:44

\(\dfrac{x}{y}=\dfrac{-3}{4}\)

\(\dfrac{x}{-3}=\dfrac{y}{4}\) 

\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)

\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)

Đinh Kiều Anh
Xem chi tiết
Thuỳ Linh Nguyễn
14 tháng 3 2023 lúc 21:50

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)

Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)

Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)

Từ `(3)` ta xét `2` trường hợp :

+, Nếu `2x+3y+1 \ne  0` thì :

`(3)=>5x=9=>x=9/5`

Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :

\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)

+, Nếu `2x+3y+1=0` thì :

`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Phạm Ngọc Minh Thư
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 19:47

\(a,\dfrac{1}{3x-3y}=\dfrac{x-y}{3\left(x-y\right)^2};\dfrac{1}{x^2-2xy+y^2}=\dfrac{3}{3\left(x-y\right)^2}\\ b,\dfrac{3}{x^2-3x}=\dfrac{6}{2x\left(x-3\right)};\dfrac{5}{2x-6}=\dfrac{5x}{2x\left(x-3\right)}\\ c,\dfrac{x}{x+3}=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{3-x}=\dfrac{-x-3}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{x^2-9}=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\)

\(d,\dfrac{1}{x^2+xy}=\dfrac{xy-y^2}{xy\left(x+y\right)\left(x-y\right)};\dfrac{1}{xy-y^2}=\dfrac{x^2+xy}{xy\left(x-y\right)\left(x+y\right)};\dfrac{2}{y^2-x^2}=\dfrac{-2xy}{xy\left(x-y\right)\left(x+y\right)}\)

Trần Thị Su
Xem chi tiết
Nguyễn Ngọc Huy Toàn
3 tháng 4 2022 lúc 19:17

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thảo Ngọc
Xem chi tiết

\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7

Thay \(x\) = y.\(\dfrac{3}{4}\) và z  = \(\dfrac{y}{5}\).7 vào biểu thức:

2\(x\) + 3y - z  = 186 ta có:

2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186

y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186

y.\(\dfrac{31}{10}\) = 186

 y = 186 : \(\dfrac{31}{10}\)

y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84

\(x\) + y + z  = 45 + 60  + 84 = 189 

 

Võ Ngọc Phương
1 tháng 1 lúc 11:01

Mình không hiểu câu sau của đề bài.

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

Do đó:

\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)

\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)

\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)

Tổng là: \(x+y+z=45+60+84=189\)

Vậy....

Võ Ngọc Phương
1 tháng 1 lúc 11:01

Dòng đầu tiên của câu trả lời mình viết nhầm nha.