Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Phương Chi
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 18:03

Ta có: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)

    \(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

    \(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

Lấp La Lấp Lánh
6 tháng 9 2021 lúc 18:03

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

......

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

dâu cute
Xem chi tiết
dâu cute
11 tháng 4 2022 lúc 8:24

giúp mk với ;-;"

☞Tᖇì  ᑎGâᗰ ☜
11 tháng 4 2022 lúc 8:33

1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100

A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100

=1/3 - 1/100 < 1/3

Đinh Minh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 4 2023 lúc 23:19

A=1/3^2+1/4^2+1/5^2+1/6^2+...+1/100^2<1/2-1/3+1/3-1/4+...+1/99-1/100

=>A<1/2-1/100<1/2

Monkey D Luffy
Xem chi tiết
O O O
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 15:50

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\)

Kirigaya Kazuto
Xem chi tiết
Phương Trâm
2 tháng 3 2017 lúc 10:40

Giải:

Ta có:

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)

Đặt \(A=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{4}-\dfrac{1}{100}\)

\(A=\dfrac{6}{25}\)

\(\dfrac{1}{6}< \dfrac{6}{25}< \dfrac{1}{4}\)

Ta lại có \(A< \dfrac{6}{25}\)

Vậy \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)

Phạm Tùng Lâm
16 tháng 4 2017 lúc 22:02

1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế, đơn giản:

=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4

**
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
..
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101

Cộng vế theo vế, đơn giản:
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6

Vậy:
1/6<1/5^2+1/6^2+...+1/100^2<1/4

Trần Bảo Hân
Xem chi tiết
Nguyễn Chơn Nhân
21 tháng 9 2018 lúc 16:13

1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

ta có:

(+)1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+...+1/99.100
=1/4-1/5+1/5-...+1/99-1/100

=1/4-1/100<1/4

=>1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

(+)1/5^2+1/6^2+1/7^2+...+1/100^2>1/5.6+...+1/99.100

=1/5-1/6+1/6-...+1/99-1/100

=1/5-1/100>1/6

=>1/5^2+1/6^2+1/7^2+...+1/100^2

Ngô Thành Chung
Xem chi tiết
Ngô Tấn Đạt
10 tháng 2 2018 lúc 19:21

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+....+\dfrac{1}{100^2}\\ >\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\ =\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\\ =\dfrac{96}{505}\\ >\dfrac{1}{6}\)

\(\dfrac{1}{5^2}+...+\dfrac{1}{100^2}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+....+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)