Cho \(a,b,c\in Q\); a, b, c đôi một khác nhau. Chứng minh rằng \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) bằng bình phương của một số hữu tỉ.
Cho A = {8; 45}, B = { 15; 4}
a) Tìm tập hợp C các số tự nhiên x = a + b sao cho a \(\in\) A, b \(\in\) B
b) Tìm tập hợp D các số tự nhiên x = a - b sao cho a \(\in\) A, b \(\in\) B
c) Tìm tập hợp E các số tự nhiên x = a . b sao cho a \(\in\) A, b \(\in\) B
d) Tìm tập hợp G các số tự nhiên x = a : b sao cho a \(\in\) A, b \(\in\) B
GIÚP MÌNH VỚI
Cho A,B,C \(^{\ne}\)\(\varnothing\) là tập con của N thỏa mãn
- A,B,C không có phần tử chung
- A \(\cup\) B \(\cup\) C = N
- Với mọi a \(\in\) A; b \(\in\) B; c \(\in\) C
thì \(\begin{cases}a+c\in A\\a+b\in C\\c+b\in B\end{cases}\)
CMR: \(0\in C\)
Tìm \(a,b,c\in Q\) sao cho
\(a+\frac{1}{b};b+\frac{1}{c};c+\frac{1}{a}\in Q\)
Cho A = { x \(\in\) N | x chia hết cho 4} , B = { x \(\in\) N | x chia hết cho 6}, C = { x \(\in\) N | x chia hết cho 12}. CHứng minh rằng:
a. A \(\subset\) C và B \(\subset\) C
b. A \(\cup\) B = C
c. A không phải là con của B
a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm
B ⊂ C Ta có x chia hết cho 12 mà 12 chia hết cho 6 => đpcm
b) A ∪ B = { x ∈ N | x chia hết cho 4 và x chia hết cho 6 }
Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm
c ) Với x=4 thì x chia hết cho 4 thỏa mãn A
x không chia hết cho 6 không thỏa mãn B
=>A không phải là con của B.
Tìm \(a,b,c\in Q\) sao cho
\(a+\frac{1}{b};b+\frac{1}{c};c+\frac{1}{a}\in Z^+\)
cho a,b,c \(\in\)Q* . thỏa mãn : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)
CMR:
\(A=\sqrt{a^2+b^2+c^2}\in Q\)
Ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{c}\Leftrightarrow c=\frac{ab}{a+b}\)
\(\Rightarrow c^2=\frac{a^2b^2}{\left(a+b\right)^2}\) thay vào A ta được :
\(A=\sqrt{a^2+b^2+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\frac{a^2\left(a+b\right)^2+b^2\left(a+b\right)^2+a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+2a^3b+a^2b^2+a^2b^2+2ab^3+b^4+a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+b^4+a^2b^2+2a^3b+2ab^3+2a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{a+b}\in Q\forall a;b;c\in Q^+\)(dpcm)
1. Cho A = { 2 + 3k | k \(\in\) Z } , B = { 2 + 6k | k \(\in\) Z } , C = { -1 + 3k | k \(\in\) Z }
a . chứng minh rằng 2 \(\in\) A , - 7 \(\in\) C . số 16 có thuộc tập hợp A không ?
b.Chứng minh rằng B \(\subset\) A , A = C
Cho A = \(\left\{x\in R|1\le x\le5\right\}\), B = \(\left\{x\in R|4\le x\le7\right\}\), C = \(\left\{x\in R|2\le x\le6\right\}\)
a) Xác định \(A\cap B,A\cap C,B\cap C,A\cup C,\)A\\(\left(B\cup C\right)\)
b)Gọi D = \(\left\{x\in R|a\le x\le b\right\}\). Xác định a, b để \(D\subset A\cap B\cap C\)
Cho a, b, c, d \(\in\) N, a \(\ge\) b \(\ge\) c \(\ge\) d.Chứng minh rằng Q = (a-b).(a-c).(a-d).(b-c).(b-d).(c-d) chia hết cho 12
cho A={x \(\in\)R \(|\) x\(\le\)-3 hoặc x>6}, B={x \(\in\) R \(|\) x2-25\(\le\)0}
a) tìm các khoảng, đoạn, nửa khoảng sau đây
A\B; B\A; R\(Agiao B); R\( A hợp B); R\(A\B)
b)cho C={x \(\in\)R \(|\)x \(\le\)a} ; D={x \(\in\)R \(|\)x\(\ge\)b}.Xác định a và b biết rằng C giao B và D giao B là các đoạn có chiều dài lần lượt là 7 và 9.Tìm C giao D