Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Lí
Xem chi tiết
missing you =
1 tháng 7 2021 lúc 11:36

\(-3x^2+x-20=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)

\(=-3\left(x^2-2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{239}{36}\right)=-3\left[\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{36}\right]\)

\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}\le-\dfrac{239}{12}< 0\left(\forall x\right)\)

Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 12:04

Ta có: \(-3x^2+x-20\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{239}{12}\)

\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}< 0\forall x\)(đpcm)

Vani
Xem chi tiết
Minh Hiếu
20 tháng 8 2021 lúc 10:33

A=(x+2)^2 +3

B=(x-5)^2 +4

Minh Hiếu
20 tháng 8 2021 lúc 10:37

C=4(x+1/2)^2 +4

D=(x-1/2)^2 +19/4

E=2(x-3/4)^2 +95/8

 

ỉn2k8>.
Xem chi tiết
Aurora
30 tháng 6 2021 lúc 9:02

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

trinh thi hang
Xem chi tiết
Phan Nghĩa
15 tháng 7 2020 lúc 17:10

\(x^2+3xy+3y^2=\left(x^2+3xy+\frac{3}{2}y^2\right)+\frac{3}{2}y^2\)

\(=\left(x+\frac{3}{2}y\right)^2+\frac{3}{2}y^2\)

Ta thay : \(\left(x+\frac{3}{2}y\right)^2\ge0\)

\(\frac{3}{2}y^2\ge0\)

Cong theo ve ta duoc dieu phai chung minh

Khách vãng lai đã xóa
Khánh Linh
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
30 tháng 8 2021 lúc 21:52

a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)

b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)

c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)

Rin Huỳnh
30 tháng 8 2021 lúc 21:53

a) = (3x-1)^2+10

Do (3x-1)^2>=0 với mọi x

--> (3x-1)^2+10>0 với mọi x

Lấp La Lấp Lánh
30 tháng 8 2021 lúc 21:53

a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)

b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)

c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)

Huy Bui
Xem chi tiết
Lương Ngọc Anh
28 tháng 6 2016 lúc 9:56

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)

                                       \(=\left(2x-7\right)^2+2\)(*)

Vì \(\left(2x-7\right)^2\ge0\) với mọi x

=> (*)\(\ge1\)

 =>(*) luôn luôn dương với mọi x

 

Ngân Hoàng Xuân
28 tháng 6 2016 lúc 10:01

ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)

vì \(\left(2x-7\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x  (đpcm)

Nguyễn Phan Thanh Trúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 11:51

\(x^2-3x+3=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\)

Lê Thị Vâng
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
20 tháng 8 2018 lúc 16:47

Ta có ;

\(2x^2-10x+27\)

\(=x^2-2x+1+x^2-8x+16+10\)

\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)

Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)

=> Biểu thức đã cho luôn dương .

( P.s : Bạn có thể tách theo kiểu khác ).

Kirigaya Kazuto
20 tháng 8 2018 lúc 16:52

\(2x^2-10x+27\)

\(=x^2+x^2-4x-6x+4+9+14\)

\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)

\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)

=> Biểu thức luôn dương vớ mọi x .

Huy Bui
Xem chi tiết
Lưu Thị Thảo Ly
28 tháng 6 2016 lúc 10:19

x4-2x+2

= (x2)2-2x2+1+2x2-2x+1

=(x2-1)2+2(x2-x+1)

=(x2-1)2+2(x2-2.1/2x+1/4+1/4)

=(x2-1)2+2[(x-1/2)2+1/4]

vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x 

nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương