Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen phuong nam
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Trần Phương Nhi
Xem chi tiết
Akai Haruma
22 tháng 8 2018 lúc 23:36

Lời giải:

\((5a-3b+8c)(5a-3b-8c)=(5a-3b)^2-(8c)^2\)

\(=25a^2+9b^2-30ab-(8c)^2\)

\(=(9a^2+25b^2-30ab)+(16a^2-16b^2)-64c^2\)

\(=(3a-5b)^2+16.4c^2-64c^2\)

\(=(3a-5b)^2\)

Trương Thị Mỹ Duyên
Xem chi tiết
thanh ngọc
2 tháng 8 2016 lúc 20:23

VT := [(5a - 3b) + 8c][(5a - 3b) - 8c] 
= (5a - 3b)^2 - 64c^2 (theo hiệu hai bình phương) 
= 25a^2 - 30ab + 9b^2 - 64c^2 (theo bình phương của hiệu) 
= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2) (vì 4c^2 = a^2 - b^2) 
= 9a^2 - 30ab + 25b^2 
= (3a - 5b)^2 (theo bình phương của hiệu).

Mai Quỳnh
Xem chi tiết
Hoai Hoang
Xem chi tiết
Nhã Doanh
30 tháng 6 2018 lúc 15:16

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-16c^2\)

\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16c^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\)

Trần Tích Thường
Xem chi tiết
☆MĭηɦღAηɦ❄
6 tháng 8 2020 lúc 20:44

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-64c^2-\left(3a-5b\right)^2=0\)

\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=64c^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16\left(a^2-b^2\right)\)

\(\Leftrightarrow16\left(a^2-b^2\right)=16\left(a^2-b^2\right)\left(true\right)\)

Vậy \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)khi \(a^2-b^2=4c^2\)

Khách vãng lai đã xóa
Nguyễn Ý Nhi
6 tháng 8 2020 lúc 20:59

(5a-3b+8c)(5a-3b-8c)

=(5a-3b)2-(8c)2

=(5a-3b)2-16.4c2

Thay a2-b2=4c2 ta có :

=25a2-30ab+9b2-16(a2-b2)

=25a2-30ab+9b2-16a2+16b2

=9a2-30ab+25b2

=(3a-5b)2(dpcm)

          
Khách vãng lai đã xóa
Phạm Đức Minh
Xem chi tiết
Phương Trâm
15 tháng 8 2017 lúc 20:07

Ta có:

\(VT=(5a-3b+8c).(5a-3b-8c)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(a^2-b^2=4c^2\) nên:

\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2=VP\)

\(\Rightarrow\) Đpcm.

Kóc PII
Xem chi tiết
Khôi Bùi
4 tháng 10 2018 lúc 21:15

Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=\left(5a-3b\right)^2-64c^2\)

\(=\left(5a-3b\right)^2-16.4c^2\)

\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\left(đpcm\right)\)