Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Big City Boy
Xem chi tiết
Koren.
Xem chi tiết
Aki Tsuki
5 tháng 3 2020 lúc 21:24

\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+9-8\right)=9\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-8\right]=9\)

\(\Leftrightarrow\left(x+3\right)^4-8\left(x+3\right)^2-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^2=-1\left(loai\right)\\\left(x+3\right)^2=9\left(tm\right)\end{matrix}\right.\)

\(\left(x+3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x+3=3\\x+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\) vậy........

Khách vãng lai đã xóa
Bùi Huyền Trang
Xem chi tiết
Huy Thắng Nguyễn
10 tháng 1 2018 lúc 17:36

2. \(x\left(x+2\right)\left(x+3\right)\left(x+5\right)=280\)

\(\Leftrightarrow x\left(x+5\right)\left(x+2\right)\left(x+3\right)=280\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+6\right)=280\)

Đặt \(x^2+5x+3=t\)

\(\Rightarrow\left(t-3\right)\left(t+3\right)=280\)

\(\Leftrightarrow t^2-9=280\)

\(\Leftrightarrow t^2=289\Leftrightarrow\left[{}\begin{matrix}t=17\\t=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+3=17\\x^2+5x+3=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-14=0\\x^2+5x+20=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+5x-14=0\text{(vì }x^2+5x+20=\left(x+\dfrac{5}{2}\right)^2+\dfrac{55}{4}>0\forall x\text{)}\)

\(\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\)

\(\Leftrightarrow\) x - 2 = 0 hoặc x + 7 = 0

\(\Leftrightarrow\) x = 2 hoặc x = - 7

Vậy x = 2 hoặc x = -7.

Huy Thắng Nguyễn
10 tháng 1 2018 lúc 17:43

3. \(\left(x+3\right)\left(x+4\right)\left(x+5\right)=x\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\left(x+5\right)-x=0\)

\(\Leftrightarrow x^3+12x^2+47x+60-x=0\)

\(\Leftrightarrow x^3+12x^2+46x+60=0\)

\(\Leftrightarrow x^3+6x^2+6x^2+36x+10x+60=0\)

\(\Leftrightarrow x^2\left(x+6\right)+6x\left(x+6\right)+10\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x+6=0\text{(vì }x^2+6x+10=\left(x+3\right)^2+1>0\forall x\text{)}\)

\(\Leftrightarrow x=-6\)

Vậy x = -6.

Huy Thắng Nguyễn
10 tháng 1 2018 lúc 18:04

4.\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}=\dfrac{1}{9}\)

\(\Leftrightarrow2\left[\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}\right]=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+6}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{6}{x\left(x+6\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow2x\left(x+6\right)=54\)

\(\Leftrightarrow2x^2+12x-54=0\)

\(\Leftrightarrow2x^2-6x+18x-54=0\)

\(\Leftrightarrow2x\left(x-3\right)+18\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+18\right)=0\)

\(\Leftrightarrow2\left(x-3\right)\left(x+9\right)=0\)

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 9 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -9

Vậy x = 3 hoặc x = -9.

Giai Điệu Bạc
Xem chi tiết
GV
Xem chi tiết
Xyz OLM
1 tháng 2 2023 lúc 13:14

\(\left(x^2-6x+9\right)+15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow\left(x-3\right)^2+15\left[\left(x-3\right)^2+1\right]=1\)

\(\Leftrightarrow16\left(x-3\right)^2+15=1\)

\(\Leftrightarrow16\left(x-3\right)^2=-14\)

=> Phương trình vô nghiệm 

Nguyễn thành Đạt
1 tháng 2 2023 lúc 13:11

\(\left(x^2-6x+9\right)-15\left(x^2-6x+10\right)=1\)

Đặt : \(x^2-6x+9=\left(x-3\right)^2=t\) thay vào pt ta được :

\(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)

\(\Leftrightarrow t=\left\{{}\begin{matrix}16\\-1\end{matrix}\right.\)

với : \(t=-1\) thì \(\left(x-3\right)^2=-1\)

\(\Rightarrow ptvonghiem\)

Với : \(t=16\) thì \(\left(x-3\right)^2=16\)

\(\Leftrightarrow x\in\left\{{}\begin{matrix}7\\-1\end{matrix}\right.\)

\(vay...\)

 

Nguyễn Huyền Anh
1 tháng 2 2023 lúc 13:17

thôi chết rồi em nhầm đáng lẽ là : \(\left(x^2-6x+9\right)^2\) á

Nguyễn Phương Nga
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 12:06

\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)

Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)

\(\Rightarrow x\le1-\sqrt{3}\)

Ta có:

\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))

\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)

(Kết hợp với điều kiện ta suy ra) 

\(\Leftrightarrow x=-1\)

tth_new
21 tháng 4 2017 lúc 20:36

x = 1 nha bạn

Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha

Đúng 100%

Đúng 100%

x = 1 nha
Mai Thị Thúy
Xem chi tiết
Hồng Phúc
1 tháng 8 2021 lúc 9:05

a, ĐK: \(x\ge1\)

Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)

TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)

\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)

\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 16:02

a/

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)

b/ - Với \(x\ge3\) pt trở thành:

\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)

- Với \(x\le1\) pt trở thành:

\(1-x+3\left(3-x\right)=6\)

\(\Leftrightarrow x=1\)

- Với \(1< x< 3\) pt trở thành:

\(x-1+3\left(3-x\right)=6\)

\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 16:07

c/ ĐKXĐ: \(x\ne\pm2\)

\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)

d/ - Với \(x\ge2\) pt trở thành:

\(x-1-2\left(x-2\right)=x^2-x-3\)

\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x\le1\) pt trở thành:

\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự

- Với \(1< x< 2\):

\(x-1-2\left(2-x\right)=x^2-x-3\)

Khách vãng lai đã xóa