Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Huy Tú
15 tháng 3 2022 lúc 13:24

a, Thay vào ta được 

\(x^2-8x+10=0\)

\(\Delta'=16-10=6>0\)

Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)

b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)

Để pt có 2 nghiệm khi m >= -1 

Dark_Hole
15 tháng 3 2022 lúc 13:26

a)Thay m=5 ta có:

\(x^2-2\left(5-1\right)x+5^2-15=0\\ =>x^2-8x+10=0\)

Công thức nghiệm của pt bâc 2 ta có: b2-4ac=(-8)2-40=24>0

=>Phương trình có 2 nghiệm phân biệt:

xong r tính ra x1 và x2 :v

Tâm3011
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 5 2022 lúc 20:42

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+4\right)\)

   \(=4m^2+8m+4-4m^2-16\)

  \(=8m-12\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow8m-12>0\Leftrightarrow m>\dfrac{3}{2}\)

Theo hệ thức Vi-ét,ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(1\right)\\x_1x_2=m^2+4\end{matrix}\right.\)

                                            \(\left(1\right)\rightarrow x_2=2\left(m+1\right)-x_1\)

\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)

\(\Leftrightarrow x_1^2+2\left(m+1\right)\left[2\left(m+1\right)-x_1\right]=3m^2+16\)

\(\Leftrightarrow x_1^2+4\left(m+1\right)^2-2x_1\left(m+1\right)=3m^2+16\)

\(\Leftrightarrow x_1^2+4m^2+8m+4-2x_1\left(m+1\right)=3m^2+16\)

\(\Leftrightarrow x_1^2+m^2+8m-12-2x_1\left(m+1\right)=0\)

\(\Leftrightarrow x_1^2+m^2+8m-12-x_1\left(x_1+x_2\right)=0\)

\(\Leftrightarrow x_1^2+m^2+8m-12-x_1^2-x_1x_2=0\)

\(\Leftrightarrow m^2+8m-12-m^2-4=0\)

\(\Leftrightarrow m^2+8m-16=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-4+4\sqrt{2}\left(tm\right)\\m=-4-4\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy \(m=\left\{-4+4\sqrt{2}\right\}\)

 

 

Điền Nguyễn Thanh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Hoàng Đức Thắng
Xem chi tiết
missing you =
10 tháng 3 2022 lúc 20:41

\(f\left(x\right)=\left(3m-4\right)x^2-2\left(m-2\right)x+m-1< 0\)

\(TH1:3m-4=0\Leftrightarrow m=\dfrac{4}{3}\Rightarrow f\left(x\right)=\dfrac{4}{3}x+\dfrac{1}{3}< 0\Leftrightarrow x< -\dfrac{1}{4}\left(ktm\right)\)

\(TH2:3m-4>0\Leftrightarrow m>\dfrac{4}{3}\Rightarrow f\left(x\right)< 0\forall x>1\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x1\le1< x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m-1\right)\left(3m-4\right)>0\\\left(x1-1\right)\left(x2-1\right)\le0\Leftrightarrow x1.x2-\left(x1+x2\right)+1\le0\\\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-4}+1\le0\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\left(màm>\dfrac{4}{3}\right)\Rightarrow loại\)

\(TH3:3m-4< 0\Leftrightarrow m< \dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\Delta'=0\Leftrightarrow m=0\left(tm\right)\\x=\dfrac{2\left(m-2\right)}{3m-4}=\dfrac{1}{2}\notin\left(1;+\infty\right)\left(tm\right)\end{matrix}\right.\\\Delta'< 0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{2}\end{matrix}\right.\\x1< x2\le1\left(1\right)\\\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\Leftrightarrow0< m< \dfrac{3}{2}\\\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-2}+1\ge0\\\dfrac{2\left(m-2\right)}{3m-4}-2< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m\le\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}m\le0\\0< m\le\dfrac{1}{2}\end{matrix}\right.\)

 

Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2022 lúc 22:29

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

Rimuru Tempest
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 14:49

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)

abc
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 11:44

Lời giải:

BPT đã cho vô nghiệm khi $(m+2)x^2-(3m+1)x+m+1>0$ với mọi $x\in\mathbb{R}$

Điều này xảy ra khi \(\left\{\begin{matrix} m+2>0\\ \Delta=(3m+1)^2-4(m+2)(m+1)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-2\\ 5m^2-6m-7< 0\end{matrix}\right.\)

\(\Leftrightarrow \frac{3-2\sqrt{11}}{5}< x< \frac{3+2\sqrt{11}}{5}\)

 

 

 

Nhung
Xem chi tiết
missing you =
26 tháng 12 2021 lúc 0:17

\(\left(x\ne0\right)đặt:x+\dfrac{1}{x}=t\Leftrightarrow x^2-xt+1=0\Rightarrow\Delta=t^2-4\ge0\Rightarrow t\in(-\text{∞};-2]\cup[2;+\text{∞})\) \(pt:x^2+\dfrac{1}{x^2}+\left(1-3m\right)\left(x+\dfrac{1}{x}\right)+3m=0\left(1\right)\)

\(\left(1\right)\Leftrightarrow t^2+\left(1-3m\right)t+3m-2=0\left(2\right)\) 

\(\left(1\right)\) \(có\) \(nghiệm\Leftrightarrow\left(2\right)\) \(có\) \(nghiệm\) \(thuộc:(-\text{∞};-2]\cup[2;+\text{∞})\)

\(\left(2\right)\Leftrightarrow\left(t-1\right)\left(t-3m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin(-\text{∞};-2]\cup[2;+\text{∞})\\t=3m-2\end{matrix}\right.\)

\(\Rightarrow t=3m-2\in(-\text{∞};-2]\cup[2;+\text{∞})\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3m-2< -2\\t=3m-2>2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow m\in(-\text{∞};0)\cup\left(\dfrac{4}{3};+\text{∞}\right)\)

 

Nguyễn Châu Mỹ Linh
Xem chi tiết