Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
missing you =
10 tháng 6 2021 lúc 12:17

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

Thái Nguyễn Trí
Xem chi tiết

Em cần cụ thể bài nào thì đăng lại bài nớ nhé

tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 6 2021 lúc 12:18

Bài 1.2

\(A=\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\)

C1:Bạn dùng pp chặn như bài 2.2

C2: (Gợi ý)\(\sqrt{x}+2\ge2\) và \(\sqrt{x}+2\inƯ\left(3\right)\)\(\Rightarrow\sqrt{x}+2=3\Leftrightarrow x=1\)

Vậy x=1 thì A nguyên

Bài 2.2

\(A=\dfrac{\sqrt{x}+7}{\sqrt{x}+2}=1+\dfrac{5}{\sqrt{x}+2}\)

Do \(\sqrt{x}\ge0;\forall x\)\(\Rightarrow\sqrt{x}+2\ge2\) \(\Rightarrow\dfrac{5}{\sqrt{x}+2}\le\dfrac{5}{2}\)\(\Rightarrow A\le\dfrac{7}{2}\) (1)

mà \(\dfrac{5}{\sqrt{x}+2}>0;\forall x\Rightarrow A>1\) (2)

Từ (1) (2) \(\Rightarrow1< A\le\dfrac{7}{2}\) mà A nguyên

\(\Rightarrow\left[{}\begin{matrix}A=2\\A=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{5}{\sqrt{x}+2}=2\\1+\dfrac{5}{\sqrt{x}+2}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=5\\\sqrt{x}+2=\dfrac{5}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy...

Bài 3.2

\(A=\dfrac{-x-2\sqrt{x}-5}{\sqrt{x}+2}\)\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=-\sqrt{x}-\dfrac{5}{\sqrt{x}+2}\)

\(=2-\left(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\right)\)

Áp dụng bđt cosi: \(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\ge2\sqrt{\left(\sqrt{x}+2\right).\dfrac{5}{\sqrt{x}+2}}=2\sqrt{5}\)

\(\Rightarrow A\le2-2\sqrt{5}\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}+2=\dfrac{5}{\sqrt{x}+2}\Leftrightarrow x=9-4\sqrt{5}\)

Tuệ Anh
Xem chi tiết
HaNa
3 tháng 6 2023 lúc 13:54

3.2:

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=\left(2m+2\right)^2=4m^2+8m+4\\4x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m+4=2\left(2m+2\right)=2\left(x_1+x_2\right)\)

\(\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2-2\left(x_1+x_2\right)=4m^2+8m+4-4m^2-4m-4m-4=0\)

Vậy hệ thức liên hệ giữa \(x_1\) và \(x_2\) mà không phụ thuộc vào tham số m là \(\left(x_1+x_2\right)^2-4x_1x_2-2\left(x_1+x_2\right)\)

Nguyễn Lê Phước Thịnh
3 tháng 6 2023 lúc 13:27

2: x1+x2=2m+2; x1x2=m^2+m

(x1+x2)^2-4x1x2

=4m^2+8m+4-4m^2-4m=4m+4

=>(x1+x2)^2-4x1x2-2(x1+x2)=4m+4-4m-4=0 ko phụ thuộc m

Anna
Xem chi tiết
Đinh Minh Đức
18 tháng 3 2022 lúc 23:29

ảnh lỗi

Jenie thỉu
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 10:22

Câu 3: 

a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)

b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)

nên BC<AC=AB

c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔEBC=ΔDCB

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

Kiều Vũ Linh
31 tháng 10 2023 lúc 6:57

Câu 2

a) Thay y = -2 vào biểu thức đã cho ta được:

2.(-2) + 3 = -1

Vậy giá trị của biểu thức đã cho tại y = -2 là -1

b) Thay x = -5 vào biểu thức đã cho ta được:

2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40

Vậy giá trị của biểu thức đã cho tại x = -5 là 40

Skem
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 17:46

3.2

\(\Delta'=\left(a+1\right)^2-2a=a^2+1>0;\forall a\Rightarrow\) pt luôn có 2 nghiệm pb với mọi a

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(a+1\right)\\x_1x_2=2a\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(x_1^2-2\left(a+1\right)x_1+2a=0\Rightarrow x_1^2=2\left(a+1\right)x_1-2a\)

Thay vào bài toán:

\(2\left(a+1\right)x_1-2a+x_1-x_2=3-2a\)

\(\Leftrightarrow\left(2a+3\right)x_1-x_2=3\)

\(\Rightarrow x_2=\left(2a+3\right)x_1-3\)

Thế vào \(x_1+x_2=2\left(a+1\right)\)

\(\Rightarrow x_1+\left(2a+3\right)x_1-3=2\left(a+1\right)\)

\(\Rightarrow\left(2a+4\right)x_1=2a+5\Rightarrow x_1=\dfrac{2a+5}{2a+4}\Rightarrow x_2=2a+2-\dfrac{2a+5}{2a+4}=\dfrac{4a^2+10a+3}{2a+4}\) (\(a\ne-2\))

Thế vào \(x_1x_2=2a\)

\(\Rightarrow\dfrac{\left(2a+5\right)\left(4a^2+10a+3\right)}{\left(2a+4\right)^2}=2a\)

\(\Rightarrow8a^2+24a+15=0\Rightarrow a=...\)

Bảo Ngọc
Xem chi tiết
Dân Chơi Đất Bắc=))))
9 tháng 3 2022 lúc 16:55

in 

I think .-.

bach
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2023 lúc 7:45

a: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)

b: \(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)

c: \(=\dfrac{6-7+x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}=\dfrac{1}{3}\)

d: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)