So sánh:
A=1+2+22+23+......+2100 và B= 2101
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1
Cho biểu thức A = 1 + 21 + 22 + 23 +...+ 2100 + 2101 .Chứng minh A chia hết cho 7
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
So sánh:
A = 1+2+22+23+...+22022 và B = 5. 22021
nhanh hộ mình với
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
so sánh:
A=1/2+1/22+1/23+...+1/22020+1/22021 và B=1/3+1/4+1/5+13/60
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
giúp mk gấp nha, chỉ có 2 ý thôi
Bài 4. So sánh:
a) A=20+21+22+23+...+22010 và B=22011-1
b) A=2009.2011 và B=20102
thanks mn nha
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
Thu gọn A và tìm n e N biết A + 2 = 2n
Ta có: \(A=2+2^2+2^3+\cdots+2^{100}\)
=>\(2A=2^2+2^3+2^4+\cdots+2^{101}\)
=>\(2A-A=2^2+2^3+2^4+\cdots+2^{101}-2-2^2-\cdots-2^{100}\)
=>\(A=2^{101}-2\)
=>\(A+2=2^{101}\)
=>\(2^{n}=2^{101}\)
=>n=101
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
câu 1:chứng minh.
a)20+2+22+23+...+249 chia hết cho 3
b)20+2+23+...+2101 chia hết cho 7
c)Tính: A=20+2+22+...+2100
Giúp mình giải bài tập,mk thả tim cho.
hạn là 1h30p ngày 15/12/2022. làm ơn đó
a: \(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{48}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{48}\right)⋮3\)
b: \(2^0+2^1+2^2+...+2^{101}\)
\(=\left(1+2+2^2\right)+...+2^{99}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{99}\right)⋮7\)
c: 2A=2+2^2+...+2^101
=>A=2^101-1
1,Tìm x:
a,2x=16 b,x3=27 c,x50=x d,(x - 22)=16
2,So sánh:a,2300 và 3200
b,3500 và 7300
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a,`
`2^x = 16`
`=> 2^x = 2^4`
`=> x = 4`
Vậy, `x = 4`
`b,`
`x^3 = 27`
`=> x^3 = 3^3`
`=> x = 3`
Vậy, `x = 3`
`c,`
\(x^{50}=x\)
`=>`\(x^{50}-x=0\)
`=>`\(x\left(x^{49}-1\right)=0\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, `x \in {0; 1}`
`d,`
`(x-2^2)=16`
`=> x - 2^2 = 16`
`=> x = 16 + 2^2`
`=> x = 20`
Vậy, `x = 20`
`2,`
`a,`
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì `8 < 9 =>`\(8^{100}< 9^{100}\)
`=>`\(2^{300}< 3^{200}\)
Vậy, \(2^{300}< 3^{200}\)
`b,`
Ta có:
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
Vì `243 < 343 =>`\(243^{100}< 343^{100}\)
`=>`\(3^{500}< 7^{300}\)
Vậy, \(3^{500}< 7^{300}.\)
tìm chữ số tận cùng của các số sau
a. 7430
b. 4931
c.8732
d. 5833
e. 2335
F.2101
g.319
h.2+22+23+...+220
chị làm a,b,c trc đc ko em, ấn nhiều mỏi quá