Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
lê anh tuấn
25 tháng 7 2023 lúc 10:12

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

Lê Hồng Long
25 tháng 7 2023 lúc 8:56

lê anh tuấn
25 tháng 7 2023 lúc 9:44

A = [ n3(n2-7)2-36n ] ⋮ 7 với ∀n ϵ Z

The Shadow
Xem chi tiết
Vũ Như Mai
4 tháng 1 2017 lúc 18:29

Vì a có trị tuyệt đối

=> a có thể là số âm hoặc số dương

Nghĩa là: ! a ! hoặc ! -a !

Khi bỏ trị, a luôn là số dương nên sẽ bằng a bên vế phải khi a bên vế phải dương, và sẽ lớn hơn a bên vế phải khi a bên vế phải âm

=> Với mọi số nguyên a, ! a ! > hoặc = a

Đinh Tuấn Duy
Xem chi tiết

ta có

-   ( /a/+/b/)^2=/a/^2+2/a/ /b/+/b/^2=a^2+2/ab/+b^2

-   /a+b/^2=a^2+2ab+b^2

do 2/ab/>= 2ab (dấu = xảy ra khi ab>=0)

=>a^+b^2+2/ab/>2=a^2+b^2+2ab=> đpcm

Thanh Tùng Nguyễn
5 tháng 8 2019 lúc 20:42

BĐT cần C/m

\(\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+2|ab|+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow|ab|\ge ab\)\(\RightarrowĐPCm\)

Lê Anh Ngọc
Xem chi tiết
Hồng Phúc
10 tháng 10 2020 lúc 16:11

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)

Khách vãng lai đã xóa
coolkid
Xem chi tiết
Phùng Minh Quân
14 tháng 12 2019 lúc 19:47

chỉ cần CM \(Q=2^{2^n}+4^n+1⋮3\) là ok 

Với n=1 thì \(Q⋮3\)

Giả sử Q vẫn chia hết cho 3 đến n=k, ta có: \(Q=2^{2^k}+4^k+1⋮3\)

Với n=k+1 thì \(Q=2^{2^k.2}+4^{k+1}+1=2^{2^k}.2^{2^k}+4^k.4+1\)

\(=\left(2^{2^k}.2^{2^k}+2^{2^k}.4^k+2^{2^k}\right)-\left(2^{2^k}.4^k+2^{2^k}-4^k.4-4\right)-3\)

\(=2^{2^k}\left(2^{2^k}+4^k+1\right)-\left(4^k+1\right)\left(2^{2^k}-4\right)-3\)

\(=2^{2^k}Q-\left(4^k+1\right)\left(4^{2^{k-1}}-1-3\right)-3⋮3\) do \(\left(4^{2^{k-1}}-1\right)⋮\left(4-1\right)=3\)

Khách vãng lai đã xóa
Le Thi Khanh Huyen
Xem chi tiết
zoombie hahaha
7 tháng 11 2016 lúc 11:46

\(2^{2n+1}=2\left(4^n\right)=2\left(3+1\right)^n=2\left(BS3+1\right)=BS3+2=3k+2\)

=>\(2^{2^{2n+1}}+3=2^{3k+2}+3=4\left(8\right)^k+3=4\left(7+1\right)^k+3=4\left(BS7+1\right)+3=BS7+7\)

chia hết cho 7

=> \(A\notin P\)

zoombie hahaha
7 tháng 11 2016 lúc 11:48

Thiếu

K\(\ge1\)

HBT_thợ săn địa ngục
7 tháng 11 2016 lúc 21:43

A chia hết cho P

vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 20:04

Chắc là \(a;b>0\), vì \(a.b>0\) thì ví dụ \(a=-1;b=-2\) BĐT sai

BĐT tương đương:

\(\dfrac{3a+4b}{ab}\ge\dfrac{48}{3a+b}\)

\(\Leftrightarrow\left(3a+4b\right)^2\ge48ab\)

\(\Leftrightarrow\left(3a-4b\right)^2\ge0\) (luôn đúng)

Thi Minh Thoa Nguyen
Xem chi tiết
__HeNry__
Xem chi tiết
thỏ
8 tháng 10 2018 lúc 20:02

a, Sửa đề:

-x2-2x-2

=-(x2+2x+2)

=-(x2+2x+1+1)

=-[(x+1)2+1]<0\(\forall\)x

b, -x2-6x-11

=-(x2+6x+11)

=-(x2+2.x.3+32+2)

=-[(x+3)2+2]<0\(\forall\)x

Đúng tick nha,oaoa

Nguyễn Thành Minh
8 tháng 10 2018 lúc 20:57

a, -x - 2x - 2

= -(x+2x+1)-1

= -(x+1)2 -1

Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1

Do đó - x - 2x - 2 < 0 ∀ x

b, -x2 - 6x - 11

= -(x2 + 2.3.x+ 32)-2

= -(x+3)2 - 2

Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2

Do đó -x2 - 6x - 11 <0 ∀ x

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:29

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)