Bài này bản hỏi 2 lần. Bạn tham khảo ở đây nhé.
Câu hỏi của pham trung thanh - Toán lớp 9 - Học toán với OnlineMath
Bài này bản hỏi 2 lần. Bạn tham khảo ở đây nhé.
Câu hỏi của pham trung thanh - Toán lớp 9 - Học toán với OnlineMath
Chứng minh rằng với mọi số thực a,b,c ta có:
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\\ \)
Một bài rất easy để dùng sos đây ạ!
1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)
Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)
Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D
Bài toán 2: \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Chứng minh rằng \(\left(a+b+c\right)^2-\dfrac{3}{4}\left[\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b^2\right)\right]>3\)
với a,b,c là các số thực
Đề có sai ko mọi ngừi
Cho 3 số thực dương a;b;c thỏa mãn \(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
Chứng minh rằng : \(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó\(a,b,c\ne0\)với \(\forall x,y\) thì:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
Chu mi ngaa!!!
Chứng minh với các số a; b; c là các số thực, ta luôn có:
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=5\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
cho a,b,c là các số thực dương chứng minh rằng :
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)
Chứng minh bđt: \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)
Chứng minh rằng: \(\left(a^2+b^2+c^2\right)\left[\left(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\right)\right]\ge\dfrac{9}{2}\)