Chắc là \(a;b>0\), vì \(a.b>0\) thì ví dụ \(a=-1;b=-2\) BĐT sai
BĐT tương đương:
\(\dfrac{3a+4b}{ab}\ge\dfrac{48}{3a+b}\)
\(\Leftrightarrow\left(3a+4b\right)^2\ge48ab\)
\(\Leftrightarrow\left(3a-4b\right)^2\ge0\) (luôn đúng)
Chắc là \(a;b>0\), vì \(a.b>0\) thì ví dụ \(a=-1;b=-2\) BĐT sai
BĐT tương đương:
\(\dfrac{3a+4b}{ab}\ge\dfrac{48}{3a+b}\)
\(\Leftrightarrow\left(3a+4b\right)^2\ge48ab\)
\(\Leftrightarrow\left(3a-4b\right)^2\ge0\) (luôn đúng)
Cho a,b,c > 0. Chứng minh rằng :\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)
Cho a,b,c > 0. Chứng minh rằng
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Cho a,b,c >0 thỏa a+b+c=3.Chứng minh rằng
\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Cho a;b;c>0 Chứng minh rằng: \(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge\dfrac{a+b+c}{2}\)
cho a,b,c\(\ge\)0,a+b+c=1.chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{9}{10}\)
Cho a , b , c > 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Chứng minh rằng \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Cho a,b > 0. Chứng minh:
\(a^3+\dfrac{b^3}{a^3}+\dfrac{1}{b^3}\ge a+\dfrac{b}{a}+\dfrac{1}{b}\)
Sử dụng các BĐT quen thuộc
Chứng minh bất đẳng thức : \(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)\(\forall a,b,c>0;a+b+c=ab+ac+ca\)
Cho a,b,c là các số thực dương thoả a + b + c = 3. Chứng minh rằng
\(\dfrac{a}{b^3+ab}+\dfrac{b}{c^3+bc}+\dfrac{c}{a^3+ca}\ge\dfrac{3}{2}\)