\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
Dùng phương pháp quy nạp chứng minh rằng :
\(n^n\ge\left(n+1\right)^{n-1}\forall n\in\)ℕ∗
C/minh : \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\forall n\in\)N*
Chứng minh rằng :
A= \(\left(1-\frac{3}{2.4}\right).\left(1-\frac{3}{3.5}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)>\frac{1}{4}\)
\(n\in N;n\ge2\)
Ai đúng và nhanh 3 tick nha :3
Bài 1 :
Chứng minh rằng :
a) \(25^{n+1}-25^n⋮100\forall n\inℕ^∗\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\forall n\inℤ\)
c) \(n^3-n⋮6\forall n\inℤ\)
Chứng minh rằng với mọi \(n\in\mathbb{N}\), ta có:
\(\left(n+45\right)\left(4n^2-1\right)⋮3\)
(câu hỏi đã chỉnh sửa)
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
Chứng minh rằng: \(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\) với mọi \(n\inℕ^∗\)
Chứng minh \(\forall n\in\)N* thì\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)