\(\sqrt{x-3}\)=13
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
<=>\(x^3=5+2\sqrt{13}+3.\sqrt[3]{5+2\sqrt{13}}.\sqrt[3]{5-2\sqrt{13}}\left(\sqrt[3]{5-2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
<=> \(x^3=10+3\sqrt[3]{5^2-\left(2\sqrt{13}\right)^2}.x\)
<=> \(x^3=10+3\sqrt[3]{-27}.x=10-9x\)
<=> x3+9x-10=0
<=> x3-x2+x2-x+10x-10=0
<=>\(x^2\left(x-1\right)+x\left(x-1\right)+10\left(x-1\right)=0\)
<=> \(\left(x^2+x+10\right)\left(x-1\right)=0\)
<=> \(\left(x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{39}{4}\right)\left(x-1\right)=0\)
<=> \(\left[\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\right]\left(x-1\right)=0\)
=> x-1=0 (vì \(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\))
<=> x=1
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
Nhận xét x > 0
=> \(x^3=10+3x\left(\sqrt[3]{5^2-4.13}\right)\)
<=> \(x^3=10-9x\)
<=> \(x^3+9x-10=0\)
<=> \(\left(x-1\right)\left(x^2+x+10\right)=0\)
<=> \(x-1=0\) vì x > 0
<=> x = 1 thử lại thỏa mãn
Vậy x = 1
Tinh giá trị biểu thuc \(A=x^2+2016-2017\)
Biết \(x=\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+3}}\)
tính giá trị của x
a) x= \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
b) x= \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
c) x= \(\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
Cho \(x=\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13+3}}\right):\sqrt{\sqrt{13}+2}}\)
Tính \(A=x^2+2017x-2018\)
Ta có
\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)
\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)
\(=54-2\sqrt{529}=8\)
\(\Rightarrow\) \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)
Xét tử số
\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)
\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23.2\sqrt{2}=46\sqrt{2}\)
Lại có \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)
\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)
\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)
ta bình phương mẫu số
\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)
\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)
Vậy mẫu \(=\sqrt{2}\)
Vậy \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\) thay vào ta đc A = 92880
RÚT GỌN BIỂU THỨC:
13) \(A = \dfrac{15\sqrt{x} - 11}{x + 2\sqrt{x} - 3} + \dfrac{3\sqrt{x} - 2}{1 - \sqrt{x}} - \dfrac{2\sqrt{x} + 3}{\sqrt{x} + 3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) (ĐK: \(x\ne1;x\ge0\))
\(A=\dfrac{15\sqrt{x}-11}{x+3\sqrt{x}-\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(15\sqrt{x}-11\right)-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{-\left(5\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(A=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
A = \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Cho x= \(\dfrac{\sqrt{13-4\sqrt{3}}}{2}.Tính\) A = \(\dfrac{\sqrt{x}+2}{2\sqrt{x}-3}\)
Lời giải:
\(x=\frac{\sqrt{13-4\sqrt{3}}}{2}=\frac{\sqrt{13-2\sqrt{12}}}{2}=\frac{\sqrt{12+1-2\sqrt{12}}}{2}=\frac{\sqrt{(\sqrt{12}-1)^2}}{2}=\frac{\sqrt{12}-1}{2}\)
\(2A=1+\frac{7}{2\sqrt{x}-3}=1+\frac{7}{\sqrt{2\sqrt{12}-2}}\)
\(A=\frac{1}{2}+\frac{7}{2\sqrt{4\sqrt{3}-2}}\)
Tính giá trị A = \(x^2+2002x-2003\)
Với x = \(\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)
\(x=\frac{\left(5+\sqrt{2}\right)^2\sqrt{\left(5-\sqrt{2}\right)^2}-\left(5-\sqrt{2}\right)^2\sqrt{\left(5+\sqrt{2}\right)^2}}{\frac{\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}-2\right)}+\sqrt{\left(\sqrt{13}+3\right)\left(\sqrt{13}-2\right)}}{\sqrt{13-4}}}\)
\(=\frac{\left(5+\sqrt{2}\right)\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)-\left(5-\sqrt{2}\right)\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\frac{\sqrt{19-5\sqrt{13}}+\sqrt{7+\sqrt{13}}}{3}}\)
\(=\frac{69\left(5+\sqrt{2}-5+\sqrt{2}\right)}{\frac{1}{\sqrt{2}}\left(\sqrt{38-10\sqrt{13}}+\sqrt{14+2\sqrt{13}}\right)}=\frac{276}{\sqrt{\left(5-\sqrt{13}\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}}\)
\(=\frac{276}{5-\sqrt{13}+\sqrt{13}+1}=46\)
\(\Rightarrow A=...\)
a, \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
b, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)
\(A=x^{2015}-x^{2016}+2017\)\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)Cho Tính giá trị của biểu thức
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Rightarrow x^3=5+2\sqrt{13}+5-2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}.x\)
\(=10+3x\sqrt[3]{25-52}\)
\(=10+3x\sqrt[3]{-27}\)
\(=10-9x\)
\(\Rightarrow x^3+9x-10=0\)
\(\Leftrightarrow x^3-x+10x-10=0\)
\(\Leftrightarrow x\left(x^2-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+10\right)=0\)
Vì \(x^2+x+10=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\forall x\)
=> x - 1 = 0
=> x = 1
Thay vào A = 12015 - 12016 = 0
Vậy A = 0