Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Viết Tùng
Xem chi tiết
lý canh hy
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
khoimzx
13 tháng 12 2020 lúc 18:54

\(x\sqrt{4-x^2}\le\dfrac{x^2+4-x^2}{2}=2\)

quangduy
Xem chi tiết
__HeNry__
Xem chi tiết
phantuananh
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
tth_new
19 tháng 9 2019 lúc 15:05

Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)

Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)

\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)

Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)

\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...

Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!

P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v

tth_new
19 tháng 9 2019 lúc 15:06

Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))

Quỳnh Anh
Xem chi tiết
Ngô Thành Chung
4 tháng 2 2021 lúc 9:24

2A = 2x (12 - 2x)

Áp dụng bất đẳng thức cosi

2x (12 - 2x) ≤ \(\dfrac{\left(2x+12-2x\right)^2}{4}\)

⇔ 2A ≤ 36

⇔ A ≤ 18

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}0\le x\le6\\2x=12-2x\end{matrix}\right.\)⇔ x = 3

Vậy Amax = 18 khi x = 3

Hồng Phúc
4 tháng 2 2021 lúc 13:30

\(A=2x\left(6-x\right)\)

\(=-2x^2+12x+18\)

\(=-2\left(x^2-6x+9\right)+18\)

\(=-2\left(x-3\right)^2+18\le18\)

\(maxA=18\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 14:32

\(Q=x^2\left(4-3x\right)=\dfrac{4}{9}.\dfrac{3}{2}x.\dfrac{3}{2}x\left(4-3x\right)\)

\(Q\le\dfrac{1}{27}.\dfrac{4}{9}.\left(\dfrac{3x}{2}+\dfrac{3x}{2}+4-3x\right)^3=\dfrac{256}{243}\)

\(Q_{maxx}=\dfrac{256}{243}\) khi \(\dfrac{3x}{2}=4-3x\Leftrightarrow x=\dfrac{8}{9}\)