Giải bpt:
\(\left|2x-7\right|< x^2+2x+2\)
Giai cac bpt sau
a,\(\left(x+1\right)\left(2x-2\right)-3>-5x-\left(2x+1\right)\left(3-x\right)\)
b,\(\left(x-3^{ }\right)^2+4\left(2-x\right)>\left(x+7\right)\)
a: \(\Leftrightarrow2x^2-2-3>-5x+\left(2x+1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2-5>-5x+2x^2-6x+x-3\)
\(\Leftrightarrow2x^2-5>2x^2-10x-3\)
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: \(\Leftrightarrow x^2-6x+9+8-4x>x+7\)
\(\Leftrightarrow x^2-10x+17-x-7>0\)
\(\Leftrightarrow x^2-11x+10>0\)
=>x>10 hoặc x<1
a: ⇔2x2−2−3>−5x+(2x+1)(x−3)⇔2x2−2−3>−5x+(2x+1)(x−3)
⇔2x2−5>−5x+2x2−6x+x−3⇔2x2−5>−5x+2x2−6x+x−3
⇔2x2−5>2x2−10x−3⇔2x2−5>2x2−10x−3
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: ⇔x2−6x+9+8−4x>x+7⇔x2−6x+9+8−4x>x+7
⇔x2−10x+17−x−7>0⇔x2−10x+17−x−7>0
⇔x2−11x+10>0⇔x2−11x+10>0
=>x>10 hoặc x<1
giải BPT\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}< x+21\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
Giải Bpt
\(4\left(x+1\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\)
ĐKXĐ: \(x\ge-\frac{3}{2}\)
Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:
\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)
\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)
- Với \(x=-1\) ko phải là nghiệm
- Với \(x\ne-1\)
\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)
\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)
\(\Leftrightarrow2\sqrt{3+2x}< -3\)
BPT vô nghiệm
Cho \(f\left(x\right)=\sqrt{2x-x^2}\). Giải BPT: \(f'\left(x\right)\ge1\)
\(f'\left(x\right)=\dfrac{1-x}{\sqrt{2x-x^2}}\)
\(f'\left(x\right)\ge1\Leftrightarrow\dfrac{1-x}{\sqrt{2x-x^2}}\ge1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-x^2>0\\1-x>0\\\left(1-x\right)^2\ge2x-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x< 1\\2x^2-4x+1\ge0\end{matrix}\right.\) \(\Rightarrow0< x\le\dfrac{2-\sqrt{2}}{2}\)
f'(x)=\(\dfrac{2-2x}{2\sqrt{2x-x^2}}\) = \(\dfrac{1-x}{\sqrt{2x-x^2}}\)
để f'(x) \(\ge\) 1 \(\Leftrightarrow\) \(\dfrac{1-x}{\sqrt{2x-x^2}}\) \(\ge\) 1 \(\Leftrightarrow\) 1-x \(\ge\) \(\sqrt{2x-x^2}\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-x^2>0\\1-2x+x^2\ge2x-x^2\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}0< x< 2\\\left\{{}\begin{matrix}x< \dfrac{2-\sqrt{2}}{2}\\x>\dfrac{2+\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\) 0<x\(\le\) \(\dfrac{2-\sqrt{2}}{2}\)
Giải bpt: \(\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)
\(\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1+3x-3x^2\le x^2+4x+4\)
\(\Leftrightarrow4x^2+4x+3x-3x^2-x^2-4x\le4-1\)
\(\Leftrightarrow3x\le3\Leftrightarrow x\le1\) vậy \(x\le1\)
Giải bpt
\(\left(x-2\right)^2\ge\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)\)
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải BPT\(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(\sqrt{x^2+2x+3}-2\right)\ge4\)