cmr:
\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{2n-1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(\forall n\ge1\right)\)
CMR: \(5.7^{2\left(n+1\right)}+2^{3n}⋮41\)
CMR: \(5.7^{2\left(n+1\right)}+2^{3n}⋮41\) (*)
Với \(n=1\) ta có \(5.7^4+2^3=12013⋮41\)
=> (*) đúng với n = 1
Gỉa sử (*) đúng với n = k tức là: \(5.7^{2\left(k+1\right)}+2^{3k}⋮41\)
hay \(5.7^{2\left(k+1\right)}+2^{3k}=41m\)
Ta cần chứng minh (*) đúng với n = k + 1
tức là \(5.7^{2\left(k+2\right)}+2^{3\left(k+1\right)}⋮41\)
Thật vậy \(5.7^{2\left(k+2\right)}+2^{3\left(k+1\right)}=5.7^{2\left(k+1\right)}.7^2+2^{3k}.2^3\)
\(=7\left(5.7^{2k+1}+2^{3k}\right)-\left(7^2-2^3\right).2^{3k}\)
\(=7.41m-41.2^{3k}=41\left(7m-2^{3k}\right)⋮41\)\(\Rightarrowđpcm\)
cmr:
\(\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\left(\forall n\ge1\right)\)
Ta có: \(\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{16}=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
................
\(\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)
⇒\(\dfrac{1}{9}+\dfrac{1}{16}+......+\dfrac{1}{\left(2n+1\right)^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{2n.\left(2n+1\right)}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{2n}-\dfrac{1}{2n+1}\)
= \(\dfrac{1}{2}-\dfrac{1}{2n+1}\)
= \(\dfrac{2n+1-2}{2n+1}\)
= \(\dfrac{2n-1}{2n+1}\)= \(1-\dfrac{2}{2n+1}\)
Ta có: n ≥ 1⇒ 2n+1 ≥ 3
⇒ \(1-\dfrac{2}{2n+1}\) ≤ \(\dfrac{1}{3}\)
hình như đề sai thì phải
Cmr: \(\left(n^2+3n+1\right)^2-1⋮24\forall n\in N\)
\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!
Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24
P/s: ( Nếu có sai sót mong thông cảm =))
CMR: \(5^{n+2}+26.5^n+8^{2n+1}⋮59\left(\forall n\in N\right)\)
với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán
giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
CMR: \(\forall n\in N\)thì \(\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-...-\left(-1\right)^n\left\{\frac{n}{n}\right\}\right|< \sqrt{2n}\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
CMR
\(n\left(n+1\right)\left(2n+1\right)⋮6\forall n\in Z\)
Đặt \(A=n(n+1)(2n+1)\)
Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)
Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)
Vậy $A$ luôn chia hết cho $2$ $(I)$
Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Vậy $A$ luôn chia hết cho $3$ $(II)$
Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)
\(CMR:\left(2^n+1\right)\left(2^n+2\right)⋮3\left(\forall n\in N\right)\)