Đặt \(A=n(n+1)(2n+1)\)
Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)
Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)
Vậy $A$ luôn chia hết cho $2$ $(I)$
Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Vậy $A$ luôn chia hết cho $3$ $(II)$
Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)