CMR
\(n\left(n+1\right)\left(2n+1\right)⋮6\forall n\in Z\)
1: \(\dfrac{\left(2^{12}\cdot3^5-4^6\cdot9^2\right)}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{\left(5^{10}\cdot7^3-25^5\cdot49^2\right)}{\left(125\cdot7\right)^3-5^9\cdot14^3}\)
2: Chứng Minh với \(\forall N\in Z\) thì B= \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Tính N = \(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
Cho a là số nguyên tố lớn hơn 3, CMR \(\left(a-1\right)\left(a+4\right)\) \(⋮\) \(6\)
Tìm n thuộc N sao cho
a) \(8⋮\left(n-2\right)\) b) \(\left(2n+1\right)⋮\left(6-n\right)\)
Bài 1 Tìm Max
a) A = \(\frac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
b) B = \(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
c) C = \(\frac{6\left|y+5\right|+14}{2\left|y+5\right|+14}\)
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
tính nhanh
2155-(174+2155)+(-68+174)
2.\(\dfrac{3}{7}\left(\dfrac{2}{9}-1\dfrac{3}{7}\right)-\dfrac{5}{3}:\dfrac{1}{9}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\)
\(\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right).\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{24}\right)\)
chứng tỏ phân số sau tối giản vs mọi số tự nhiên n\(\dfrac{n+1}{2n+3}\)
Tìm các số nguyên n để
\(\left(n+7\right)^2-6\left(n+7\right)⋮n+7\)