Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dân Chơi Đất Bắc=))))
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:15

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:06

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:09

2.

a. Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)

Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương

b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)

Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm

Xuan Xuannajimex
Xem chi tiết
Akai Haruma
11 tháng 6 2021 lúc 1:42

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

Đức Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:43

Δ=(2m+2)^2-4*4m

=4m^2+8m+4-16m

=4m^2-8m+4=(2m-2)^2

Để phương trình có hai nghiệm phân biệt thì 2m-2<>0

=>m<>1

x1+x2>2 và x1x2>1

=>2m+2>2 và 4m>1

=>m>1/4

Quyên Hoàng
Xem chi tiết
Kiều Vũ Linh
15 tháng 3 2023 lúc 16:24

∆' = m² - 2m + 1 + 4m

= m² + 2m + 1

= (m + 1)² ≥ 0 với mọi m

a) Để phương trình có hai nghiệm dương thì:

S = x₁ + x₂ = 2(m - 1) > 0

P = x₁.x₂ = -4m > 0

*) 2(m - 1) > 0

m - 1 > 0

m > 1 (1)

*) -4m > 0

m < 0 (2)

Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.

b) Để phương trình có hai nghiệm âm phân biệt thì

∆ > 0; S < 0; P > 0

*) ∆ > 0 

⇔ (m + 1)² > 0

⇔ m + 1 ≠ 0

⇔ m ≠ -1  (3)

*) S = 2(m - 1) < 0

⇔ m - 1 < 0

⇔ m < 1   (4)

*) P > 0

⇔ -4m < 0

⇔ m < 0   (5)

Từ (3), (4) và (5) ⇒ m < 1

Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt

YangSu
15 tháng 3 2023 lúc 16:02

\(x^2-2\left(m-1\right)x-4m=0\)

\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy m < 1 thì pt có 2 nghiệm âm phân biệt

123 concak
Xem chi tiết
Nguyễn Huy Tú
2 tháng 2 2022 lúc 19:57

*, Để pt (3) có nghiệm 

\(\Delta'=\left(m-1\right)^2-\left(-4m\right)=m^2+2m+1=\left(m+1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 

*, \(\Delta'=\left(m+1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi \(m+1\ne0\Leftrightarrow m\ne-1\)

Vậy với m khác -1 thì pt (3) luôn có 2 nghiệm pb 

Bẹp Linh
Xem chi tiết
trân lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Quỳnh Hà
Xem chi tiết
Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 14:02

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)

=>Phương trình luôn có hai nghiệm 

 

Nguyễn Việt Lâm
6 tháng 1 2022 lúc 14:10

\(x^2+mx+m-1=0\)

\(\Leftrightarrow x^2-1+mx+m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-m\end{matrix}\right.\)

Phương trình đã cho có 2 nghiệm lớn hơn m khi:

\(\left\{{}\begin{matrix}-1>m\\1-m>m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m< \dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow m< -1\)