`x^2 -2(m+1)x+4m=0`
Tìm m để pt có 2 nghiệm cùng lớn hơn 1.
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
Cho các pt sau :\(x^2-8x+4m=0\left(1\right);x^2+x-4m=0\left(2\right)\)
a) Tìm m để 2 pt cùng có nghiệm.
b) Tìm m để 1 trong các nghiệm của pt(1) gấp đôi 1 nghiệm nào đó của pt(2).
Lời giải:
a) Để 2 pt cùng có nghiệm thì:
\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)
b)
Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:
Ta có:
\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)
\(\Rightarrow 5a=5m\Leftrightarrow a=m\)
Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$
$\Leftrightarrow m=0$ hoặc $m=3$
cho pt : x2- 2(m+1)x+4m=0
tìm đk của m để phương trình có 2 nghiệm phân biệt cùng lớn hơn 1
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4=(2m-2)^2
Để phương trình có hai nghiệm phân biệt thì 2m-2<>0
=>m<>1
x1+x2>2 và x1x2>1
=>2m+2>2 và 4m>1
=>m>1/4
Cho pt x^2 -2(m-1).x-4m = 0 a) tìm m để pt có 2 nghiệm dương b) tìn m để pt có 2 nghiệm âm phân biệt
∆' = m² - 2m + 1 + 4m
= m² + 2m + 1
= (m + 1)² ≥ 0 với mọi m
a) Để phương trình có hai nghiệm dương thì:
S = x₁ + x₂ = 2(m - 1) > 0
P = x₁.x₂ = -4m > 0
*) 2(m - 1) > 0
m - 1 > 0
m > 1 (1)
*) -4m > 0
m < 0 (2)
Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.
b) Để phương trình có hai nghiệm âm phân biệt thì
∆ > 0; S < 0; P > 0
*) ∆ > 0
⇔ (m + 1)² > 0
⇔ m + 1 ≠ 0
⇔ m ≠ -1 (3)
*) S = 2(m - 1) < 0
⇔ m - 1 < 0
⇔ m < 1 (4)
*) P > 0
⇔ -4m < 0
⇔ m < 0 (5)
Từ (3), (4) và (5) ⇒ m < 1
Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt
\(x^2-2\left(m-1\right)x-4m=0\)
\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy m < 1 thì pt có 2 nghiệm âm phân biệt
: x^2 – 2( m- 1)x – 4m = 0 ( 3)
⦁ Tìm m để PT(3) có nghiệm
⦁ Tìm m để PT(3) có 2 nghiệm phân biệt
help voi mn
*, Để pt (3) có nghiệm
\(\Delta'=\left(m-1\right)^2-\left(-4m\right)=m^2+2m+1=\left(m+1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
*, \(\Delta'=\left(m+1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi \(m+1\ne0\Leftrightarrow m\ne-1\)
Vậy với m khác -1 thì pt (3) luôn có 2 nghiệm pb
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
1Tìm m để pt \(x^3+x^2+x=m\left(1+x^2\right)^2\) có nghiệm
2 Cho pt \(\left(m+1\right)x^4-3mx^2+4m=0\) Tìm m để pt
a. Có 4 nghiệm phân biệt
b, Có đungs 2 nghiệm
c, Có 4 nghiệm đồng thời 1 nghiệm nhỏ hơn \(-\sqrt{5}\) 3 nghiệm còn lại lớn hơn \(-\sqrt{2}\)
\(x^2+mx+m-1=0\)
tìm m để pt có 2 nghiệm lớn hơn m
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)
=>Phương trình luôn có hai nghiệm
\(x^2+mx+m-1=0\)
\(\Leftrightarrow x^2-1+mx+m=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1+m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-m\end{matrix}\right.\)
Phương trình đã cho có 2 nghiệm lớn hơn m khi:
\(\left\{{}\begin{matrix}-1>m\\1-m>m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m< \dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow m< -1\)