Giải phương trình:
\(\dfrac{3t}{t^2+3t+2}+\dfrac{2t}{t^2+t+2}=1\)
\(\begin{cases} \dfrac{3s-2t}{5}+\dfrac{5s-3t}{3}=t+s\\ \dfrac{2s-3t}{3}+\dfrac{4s-3t}{2}=t+1 \end{cases} \)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}4x^2-5\left(y+1\right)=\left(2x-3\right)^2\\3\left(7x+2\right)=5\left(2y-1\right)-3x\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\dfrac{3s-2t}{5}+\dfrac{5s-3t}{3}=s+1\\\dfrac{2s-3t}{3}+\dfrac{4s-3t}{2}=t+1\end{matrix}\right.\).
Trong các khoảng thời gian từ 0 đến \(\dfrac{T}{4}\), từ \(\dfrac{T}{4}\) đến \(\dfrac{T}{2}\), từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\), từ \(\dfrac{3T}{4}\) đến \(T\), gia tốc của dao động thay đổi như thế nào?
1. So sánh đồ thị của vận tốc (Hình 3.2) với đồ thị của li độ (Hình 3.1)
- Pha ban đầu của vận tốc là \(\frac{\pi }{4}\)
- Pha ban đầu của li độ là 0
Pha ban đầu của vận tốc lớn hơn li độ nên vận tốc sớm pha hơn so với li độ.
2. Trong các khoảng thời gian từ 0 đến \(\frac{T}{4}\), từ \(\frac{T}{4}\)đến \(\frac{T}{2}\), từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\), từ \(\frac{{3T}}{4}\)đến T vận tốc của dao động điều hoà thay đổi:
Từ 0 đến \(\frac{T}{4}\): vận tốc có hướng từ biên về vị trí cân bằng ngược chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\frac{T}{4}\)
Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): vận tốc có hướng từ vị trí cân bằng về biên ngược với chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\)
Từ \(\frac{T}{2}\) đến \(\frac{{3T}}{4}\): vận tốc có hướng từ vị trí biên về vị trí cân bằng cùng chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\)
Từ \(\frac{{3T}}{4}\)đến T: vận tốc có hướng từ vị trí cân bằng về biên cùng chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại T.
Trong các khoảng thời gian từ 0 đến \(\dfrac{T}{4}\), từ \(\dfrac{T}{4}\) đến \(\dfrac{T}{2}\), từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\), từ \(\dfrac{3T}{4}\) đến \(T\), vận tốc của dao động điều hoà thay đổi như thế nào?
Trong các khoảng thời gian từ 0 đến \(\dfrac{T}{4}\) , từ \(\dfrac{T}{4}\) đến , \(\dfrac{T}{2}\) từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\) , \(\dfrac{3T}{4}\) từ đến T vận tốc của dao động điều hoà thay đổi:
Từ 0 đến \(\dfrac{T}{4}\): vận tốc có hướng từ biên về vị trí cân bằng ngược chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\dfrac{T}{4}\)
Từ \(\dfrac{T}{4}\) đến \(\dfrac{T}{2}\): vận tốc có hướng từ vị trí cân bằng về biên ngược với chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại \(\dfrac{T}{2}\)
Từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\): vận tốc có hướng từ vị trí biên về vị trí cân bằng cùng chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\dfrac{3T}{4}\)
Từ \(\dfrac{3T}{4}\) đến T: vận tốc có hướng từ vị trí cân bằng về biên cùng chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại T.
Trong không gian oxyz phương trình đường thẳng d đi qua điểm M(3;0;-1) và có vecto chỉ phương a=(-1;2;3) là
A. \(\left\{{}\begin{matrix}x=3-t\\y=2t\\z=-1+3t\end{matrix}\right.\)
B. \(\left\{{}\begin{matrix}x=-1+3t\\y=2\\z=3-t\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}x=3+t\\y=2t\\z=-1-3t\end{matrix}\right.\)
D. \(\left\{{}\begin{matrix}x=-1-3t\\y=2\\z=3+t\end{matrix}\right.\)
1. \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3t}{4}=K\) và x.y.t=\(-\)108. Tìm x,y,t
2.\(\dfrac{x}{2}=\dfrac{2y}{5}=\dfrac{4t}{7}\) và 3t+5y+7t=123
1/ Đặt: \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3t}{4}=k\)
=> \(x=2k;y=\dfrac{3k}{2};t=\dfrac{4k}{3}\)
=> \(xyt=2k\cdot\dfrac{3k}{2}\cdot\dfrac{4k}{3}=4k^3=-108\)
=> \(k^3=-27\Rightarrow k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-3\right)=-6\\y=\dfrac{3k}{2}=\dfrac{3\cdot\left(-3\right)}{2}=-\dfrac{9}{2}\\t=\dfrac{4k}{3}=\dfrac{4\cdot\left(-3\right)}{3}=-4\end{matrix}\right.\)
Vậy ...........
2/ Sửa đề: 3x + 5y+7t = 123
Ta có: \(\dfrac{x}{2}=\dfrac{2y}{5}=\dfrac{4t}{7}\)
\(\Rightarrow\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}\)
A/dung t/c của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}=\dfrac{3x+5y+7t}{6+12,5+12,25}=\dfrac{123}{30,75}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4\cdot6}{3}=8\\y=\dfrac{4\cdot12,5}{5}=10\\t=\dfrac{4\cdot12,25}{7}=7\end{matrix}\right.\)
Vậy............
Thu gọn các đa thức sau đây rồi tìm nghiệm của chúng:
a) \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)
b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)
a, Đặt \(A=\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)
\(=2t^2-5t+1-t^2-3t-1\)
\(=t^2-8t\)
Ta có: \(t^2-8t=0\)
\(\Leftrightarrow t\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=8\end{matrix}\right.\)
Vậy t = 0 hoặc t = 8 là nghiệm của A
b, Đặt \(B=\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)
\(=3t^2-2t+1-3t^2+2t-5\)
\(=-4\)
\(\Rightarrow\)B vô nghiệm vì giá trị của B không phụ thuộc vào t
Vậy đa thức B vô nghiệm
a) Ta có: \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)
\(=2t^2-5t+1-t^2-3t-1=t^2-8t\)
Xét \(t^2-8t=0\) hay \(t\left(t-8\right)=0\) ta được hai nghiệm là \(t_1=0,t_2=8\)
b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)
\(=3t^2-2t+1-3t^2+2t-5=-4\)
Rõ ràng ( - 4 ) không thể = 0 nên đa thức này không có nghiệm. Nó là đa thức bậc 0 ( vì -4 = -4t0 )
giải phương trình
\(4t^4+4t^3-3t^2-3t=0\)
\(t^3-2t=4\)
\(4t^4+4t^3-3t^2-3t=0\)
\(\Leftrightarrow t\left(4t^3+4t^2-3t-3\right)=0\)
\(\Leftrightarrow t\left[4t^2\left(t+1\right)-3\left(t+1\right)\right]=0\)
\(\Leftrightarrow t\left(t+1\right)\left(4t^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t+1=0\\4t^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t^2=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=-1\\t=\frac{\pm\sqrt{3}}{2}\end{matrix}\right.\)
___
\(t^3-2t=4\)
\(\Leftrightarrow t^3-2t-4=0\)
\(\Leftrightarrow t^3-2t^2+2t^2-4t+2t-4=0\)
\(\Leftrightarrow t^2\left(t-2\right)+2t\left(t-2\right)+2\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^2+2t+2\right)=0\)
Vì \(t^2+2t+2>0\forall t\)
\(\Leftrightarrow t=2\)
Tính góc giữa các đường thẳng sau:
a) \(d_1:3x-4y=0\) và \(d_2:\left\{{}\begin{matrix}x=1+3t\\y=-4t\end{matrix}\right.\)
b) \(d_1:\dfrac{x}{1}=\dfrac{y+2}{-2}\) và \(d_2:\left\{{}\begin{matrix}x=5+3t\\t=1-t\end{matrix}\right.\)