Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Thơ Nụ =))
Xem chi tiết
Nguyen hoan
Xem chi tiết
Vũ Thành Hưng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 9:27

\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

Tuệ Lâm
Xem chi tiết
^-^ Chúa tể hắc ám ^-^
12 tháng 12 2017 lúc 17:48

Ta sẽ chứng minh:

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\)

Thật vậy,ta có:

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ac+bc}\)

Áp dụng bất đẳng thức Cauchy-Schwarz: \(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) (1)

Ta sẽ chứng minh:

\(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\) *đúng*

\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\) (2)

Từ (1) và (2) ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\)

Hay \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c>0\)

Tuệ Lâm
12 tháng 12 2017 lúc 16:54
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
18 tháng 10 2023 lúc 21:24

 Ta có \(\dfrac{a^3+b^3}{2ab}\ge\dfrac{ab\left(a+b\right)}{2ab}=\dfrac{a+b}{2}\) 

(áp dụng BĐT quen thuộc \(a^3+b^3\ge ab\left(a+b\right)\))

 Lập 2 BĐT tương tự rồi cộng theo vế:

 \(VT\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=a+b+c\)

 Dấu "=" xảy ra khi \(a=b=c\)

 Ta có đpcm.

friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Thanh Tu Nguyen
Xem chi tiết
Thanh Tu Nguyen
23 tháng 3 2023 lúc 22:08

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

Nguyễn Đức Duy
Xem chi tiết
Lê Song Phương
14 tháng 8 2023 lúc 15:08

Ta có \(\dfrac{a^2}{b^2}+1\ge2.\dfrac{a}{b}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được:

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (*)

Mà ta lại có \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=3\)

\(\Leftrightarrow-3\ge-\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (**)

Cộng theo vế (*) và (**), ta được đpcm. 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)