Với \(a>0;\) \(b>0\); \(c>0\); hãy chứng minh: \(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ca}\ge a+b+c\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Chứng minh:
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\le\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\) (a,b,c>0)
chứng minh \(a+\dfrac{b^2}{2}+\dfrac{c^3}{3}\ge\dfrac{11}{6}\) với a,b,c khác 0,abc=1
Cho a,b,c>0 thỏa mãn a+b+c=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\). Chứng minh rằng:
\(\dfrac{1}{a^3+b+c}+\dfrac{1}{a+b^3+c}+\dfrac{1}{a+b+c^3}\le1\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{\sqrt[3]{abc}}{a+b+c}\ge\dfrac{10}{3}\)
cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
Cho \(a,b,c>0\). Chứng minh:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
cho a,b,c>0 chứng minh
\(P=\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+c^2}}+\dfrac{c}{\sqrt{ca+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)