Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diệp Nguyễn Thị Huyền

cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 19:20

Ta có:

\(\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}\ge3\sqrt[3]{\dfrac{a^2}{bc}}=\dfrac{3a}{\sqrt[3]{abc}}\)

\(\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3b}{\sqrt[3]{abc}}\)

\(\dfrac{c}{a}+\dfrac{c}{a}+\dfrac{a}{b}\ge\dfrac{3c}{\sqrt[3]{abc}}\)

Cộng vế:

\(3\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)

\(\Rightarrow\) đpcm


Các câu hỏi tương tự
Diệp Nguyễn Thị Huyền
Xem chi tiết
minh nguyen
Xem chi tiết
đấng ys
Xem chi tiết
_little rays of sunshine...
Xem chi tiết
friknob
Xem chi tiết
Người Vô Danh
Xem chi tiết
Lê Đức Lương
Xem chi tiết
Hoàn Minh
Xem chi tiết
Lê Đức Lương
Xem chi tiết