Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Sơ Hạ
Xem chi tiết
Akai Haruma
29 tháng 3 2019 lúc 19:30

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

Cần Phải Biết Tên
Xem chi tiết
Ngô Kim Tuyền
29 tháng 10 2018 lúc 13:15

a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)

b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)

c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)

d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)

= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)

= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)

= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)

f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)

= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)

g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)

= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)

h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)

= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)

= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)

= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)

lê thị hương giang
Xem chi tiết
Hung nguyen
16 tháng 7 2018 lúc 13:52

Ta có:

\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)

Dùng cái này làm được hết mấy câu đó.

Mysterious Person
16 tháng 7 2018 lúc 22:14

nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .

Quỳnh Đỗ
2 tháng 10 2018 lúc 20:45

A B C c a b

Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 15:15

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

Khách vãng lai đã xóa
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Mất nick đau lòng con qu...
5 tháng 7 2019 lúc 18:01

a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)

b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)

\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng ) 

c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)

Tiên Hồ Đỗ Thị Cẩm
5 tháng 7 2019 lúc 18:38

um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!

mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:

\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)

CẢM ƠN bạn nhiều lắm luôn nha!!!!!

Trang Ling Nguyen
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 9 2020 lúc 15:43

\(A=\frac{sina+cosa}{cosa-sina}=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{tana+1}{1-tana}=\frac{5+1}{1-5}=...\)

\(B=\frac{8cos^3a-2sin^3a+cosa}{2cosa-sin^3a}\) để làm được câu này chỉ cần nhớ đến công thức: \(\frac{1}{cos^2a}=1+tan^2a\)

\(B=\frac{\frac{8cos^3a}{cos^3a}-\frac{2sin^3a}{cos^3a}+\frac{cosa}{cosa}.\frac{1}{cos^2a}}{\frac{2cosa}{cosa}.\frac{1}{cos^2a}-\frac{sin^3a}{cos^3a}}=\frac{8-2tan^3a+1+tan^2a}{2\left(1+tan^2a\right)-tan^3a}=\frac{9-2tan^3a+tan^2a}{2+2tan^2a-tan^3a}=\frac{9-2.5^3+5^2}{2+2.5^2-5^3}=...\)

Nguyên Nguyên
Xem chi tiết
Ngô Thành Chung
5 tháng 9 2021 lúc 20:33

a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)

b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx

⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x

⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x

⇔ 4sin2x + (sinx + cosx) . sin2x = 0

⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)

⇔ sin2x = 0

c, 2cos3x = sin3x

⇔ 2cos3x = 3sinx - 4sin3x

⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0

⇔ sin3x + 2cos3x - 3sinx.cos2x = 0

Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình

Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được : 

tan3x + 2 - 3tanx = 0

⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x

⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1

⇔ cos2x - \(\sqrt{3}sin2x\) = 1

⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)

⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

e, cos3x + sin3x = 2cos5x + 2sin5x

⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0

⇔ cos3x . (- cos2x) + sin3x . cos2x = 0

⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 8 2020 lúc 19:23

a/

\(cos^6x+sin^2x=1\)

\(\Leftrightarrow cos^6x-\left(1-sin^2x\right)=0\)

\(\Leftrightarrow cos^6x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(cos^4x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos^2x-1\right)\left(cos^2x+1\right)=0\)

\(\Leftrightarrow-cos^2x.sin^2x=0\)

\(\Leftrightarrow sin^22x=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Nguyễn Việt Lâm
29 tháng 8 2020 lúc 19:28

b/

\(cos^6x-sin^6x=\frac{13}{18}cos^22x\)

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(cos^4x+sin^4x+sin^2x.cos^2x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left[\left(sin^2x+cos^2x\right)^2-sin^2x.cos^2x\right]=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(1-\frac{1}{4}sin^22x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(1-\frac{1}{4}\left(1-cos^22x\right)\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(\frac{3}{4}+\frac{1}{4}cos^22x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Nguyễn Việt Lâm
29 tháng 8 2020 lúc 19:32

c/

\(cos^4x+sin^6x=cos2x\)

\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)

\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)

Lê Huy Hoàng
Xem chi tiết
Dưa Hấu
17 tháng 7 2021 lúc 9:41

undefined