a/
\(cos^6x+sin^2x=1\)
\(\Leftrightarrow cos^6x-\left(1-sin^2x\right)=0\)
\(\Leftrightarrow cos^6x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(cos^4x-1\right)=0\)
\(\Leftrightarrow cos^2x\left(cos^2x-1\right)\left(cos^2x+1\right)=0\)
\(\Leftrightarrow-cos^2x.sin^2x=0\)
\(\Leftrightarrow sin^22x=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
b/
\(cos^6x-sin^6x=\frac{13}{18}cos^22x\)
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(cos^4x+sin^4x+sin^2x.cos^2x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left[\left(sin^2x+cos^2x\right)^2-sin^2x.cos^2x\right]=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(1-\frac{1}{4}sin^22x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(1-\frac{1}{4}\left(1-cos^22x\right)\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(\frac{3}{4}+\frac{1}{4}cos^22x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
c/
\(cos^4x+sin^6x=cos2x\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)
\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)
\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=k2\pi\)
\(\Rightarrow x=k\pi\)
d/
\(2cos^22x+cos2x=4sin^22x.cos^2x\)
\(\Leftrightarrow2cos^22x+cos2x=2\left(1+cos2x\right)\left(1-cos^22x\right)\)
\(\Leftrightarrow2cos^32x+4cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left(cos2x+2\right)\left(2cos^22x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-2\left(vn\right)\\2cos^22x-1=0\end{matrix}\right.\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow4x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)