S1 = 1+2+22+23+.....+210
Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263
\(S_1=1+2+2^2+2^3+..+2^{63}\\ \Rightarrow2S_1=2+2^2+2^3+2^4+...+2^{64}\\ \Rightarrow S_1-2S_1=1-2^{64}\\ \Rightarrow-S_1=1-2^{64}\\ \Rightarrow S_1=2^{64}-1.\)
- Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)
= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1
H2.right
`#3107.101107`
`S_1 = 1 + 2 + 2^2 + 2^3 + ... + 2^63`
`2S_1 = 2 + 2^2 + 2^3 + .... + 2^64`
`2S_1 - S_1 = (2 + 2^2 + 2^3 + ... + 2^64) - (1 + 2 + 2^2 + 2^3 + ... + 2^63)`
`S_1 = 2 + 2^2 + 2^3 + ... + 2^64 - 1 - 2 - 2^2 - 2^3 - ... - 2^63`
`S_1 = 2^64 - 1`
Vậy, `S_1 = 2^64 - 1.`
Kết quả của phép tính (1 + 2 + 22 + 23 + 24 + … + 210): 2047 bằng
(1 + 2 + 22 + 23 + 24 + … + 210): 2047
= [(1+210).210 : 2 ] : 2047
= [211. 105] : 2047
= 22155 : 2047
mình tính đến khúc này thì thấy chia ko hết :Đ
bạn xem lại đề hoặc có thể mik sai thật
Rút gọn:
S= 2 + 22 + 23 + 24 + ... 210
\(S=2+2^2+2^3+...+2^{10}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)
\(2S=2^2+2^3+...+2^{11}\)
\(2S-S=2^2+2^3+...+2^{11}-2-2^2-...-2^{10}\)
\(S=2^{11}-2\)
Chỉnh đề:
\(S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S=2.\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(2S=2^2+2^3+2^4+2^5+...+2^{11}\)
\(2S-S=\left(2^2+2^3+2^4+2^5+...+2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(S=2^{11}-2\)
\(#\)\(Wendy\) \(Dang\)
A = 2 + 22+ 23+24 + ...+ 210
tim x de A +2 + 2x-1
et o ettt
nhanh = tick
Sửa đề: A + 2 = 2x-1
\(A=2+2^2+2^3+2^4+\dots+2^{10}\\2A=2^2+2^3+2^4+2^5+\dots+2^{11}\\2A-A=(2^2+2^3+2^4+2^5+\dots+2^{11})-(2+2^2+2^3+2^4+\dots+2^{10})\\A=2^{11}-2\\\Rightarrow A+2=2^{11}\)
Mà: \(A+2=2^{x-1}\)
\(\Rightarrow2^{x-1}=2^{11}\)
\(\Rightarrow x-1=11\)
\(\Rightarrow x=11+1=12\)
bài 1:
a. S2 = 21+23+25+...+1001
b. S4 = 15+25+35+..+115
bài 2:
a. 2x-138= 23 .32
b. 5.(x+35) = 515
c. 814- ( x-305)=712
d. 20 - [ 7(x-3) +4] =2
e. 9x-1 =9
e. 5x-2 -32 = 24 - (28. 22 - 210 . 22)
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
2:
a: \(2x-138=2^3\cdot3^2\)
=>\(2x-138=8\cdot9=72\)
=>2x=138+72=210
=>x=105
b: \(5\cdot\left(x+35\right)=515\)
=>x+35=103
=>x=103-35=68
c: \(814-\left(x-305\right)=712\)
=>x-305=814-712=102
=>x=102+305=407
d: \(20-\left[7\left(x-3\right)+4\right]=2\)
=>7(x-3)+4=18
=>7(x-3)=14
=>x-3=2
=>x=5
e: \(9^{x-1}=9\)
=>x-1=1
=>x=2
f: \(5^{x-2}-3^2=2^4-\left(2^8\cdot2^2-2^{10}\cdot2^2\right)\)
=>\(5^{x-2}-9=16-1024+4096\)
=>\(5^{x-2}=3097\)
=>\(x-2=log_53097\)
=>\(x=2+log_53097\)
Chứng minh rằng \(\frac{1}{^22}+\frac{1}{^23}+...+\frac{1}{^210}>\frac{9}{22}\)
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
C=5122512/22-512/23-512/24-...-512/210
\(C=\dfrac{5122512}{2^2}-512\left(\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)
Đặt BT trong ngoặc đơn là B
\(\Rightarrow2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
\(B=2B-B=\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\)
\(\Rightarrow C=\dfrac{5120512+2000}{2^2}-512\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=\dfrac{512.10001+2^2.500}{2^2}-512\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=\dfrac{2^9.10001+2^2.500}{2^2}-2^9\left(\dfrac{1}{2^2}-\dfrac{1}{2^{10}}\right)=\)
\(=2^7.10001+500-2^7+\dfrac{1}{2}=\)
\(=2^7.10000+500+0,5=1280000+500+0,5=1280500,5\)
CMR \(\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{19}{9^210^2}<1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)
Tổng sau có chia hết cho 3 không?
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3