cho hệ phương trình: mx + 3y= - 4,
x- 2y=5
a/ giải hệ pt với m=2
b/ tìm m để hệ pt không có nghiệm
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)
Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)
Khi đó ta có hpt:
\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x, y trái dấu nên ta xét 2 trường hợp
Th1: x > 0; y < 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)
Th2: x < 0; y > 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)
Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu
c, Từ b ta có:
Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)
Xét các trường hợp:
Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\)
\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 1
\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)
Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)
\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 7
\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)
Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|
Chúc bn học tốt!
Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt
Cho hệ pt: x+y=1 và mx+2y=m
a) với m=3 giải hệ pt
b)tìm m để hệ pt có 1 nghiệm duy nhất, có voi số nghiệm
a) Thay m=3 vào hpt \(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\3x+2-2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy m=3 thì hpt có nghiệm duy nhất (x,y)=(1;0)
b)Ta có \(\hept{\begin{cases}x=1-y\\m-my+2y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\\left(2-m\right)y=0\left(2\right)\end{cases}}\)
Để hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\ne0\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)
Khi đó \(\left(2\right)\Leftrightarrow y=0\).Thay vào \(\left(1\right)\Leftrightarrow x=1\)
Để hpt có vô số nghiệm \(\Leftrightarrow2-m=0\Leftrightarrow m=2\)
Vậy m\(\ne\)2 thì hpt có nghiệm duy nhất (x;y)=(1;0)
m=2 thì hpt có vô số nghiệm
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
Cho hệ pt: x+my=9
mx-3y=4
1/ Với giá trị nào của m để hệ có nghiệm (-1;3)
2/ Chứng tỏ răng hệ phương trình luôn luôn có nghiệm duy nhất
3/với giá trị nào của m để nghiêm(x;y) thỏa mãn hệ thức: x-3y=[28/(m^2+3)]-3
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Sửa đoạn `xy=x+y+2`
``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)^2=10/(m+2)`
`<=>5-10m=10(m+2)`
`<=>1-2m=2m+4`
`<=>4m=-3`
`<=>m=-3/4(tm)`
Bài tập 1 Cho hệ phương trình {mx-2y=-1
{2x+3y=1 (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x =- \(\dfrac{1}{2}\) và y =\(\dfrac{2}{3}\) .
3. Tìm nghiệm của hệ phương trình (1) theo m.
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
1/ cho hệ pt\(\hept{\begin{cases}x+2y=m\\2x+5y=1\end{cases}}\)a)giải hệ với m=1 . b)tìm m để hệ có nghiệm duy nhất thỏa mãn y=/x/
2/ cho hệ pt \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)a) giải hệ với m=2 .b) tìm các số nguyên m để hệ có nghiệm duy nhất với x>0 và y<0 .
c) tìm các số nguyên m để hệ có nghiệm duy nhất thỏa mãn x>2y
HELP !!!
cho hệ phương trình \(\hept{\begin{cases}mx+y=1\\x+my=1\end{cases}}\)
a, giải hệ pt theo tham số m
b, tìm m để hệ pt có nghiệm x,y thỏa mãn x-y=1
c, tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m