Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Dương Thị Thu Hiền
Xem chi tiết
saadaa
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 9 2016 lúc 22:51

ĐKXĐ : \(4\le x\le6\)

Xét vế phải \(\left(1.\sqrt{6-x}+1.\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left(6-x+x-4\right)=4\)

\(\Leftrightarrow\sqrt{6-x}+\sqrt{x-4}\le2\)

Xét vế trái : \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với \(\hept{\begin{cases}4\le x\le6\\x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\) \(\Leftrightarrow x=5\) (thỏa mãn)

Vậy pt có nghiệm x = 5

Đăng Trần
Xem chi tiết
ha thi thuy
Xem chi tiết
Trần Quốc Lộc
9 tháng 9 2018 lúc 16:13

\(\text{a) }\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\\ \Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\\ \Leftrightarrow\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}+\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}=2\\ \Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

Với \(x\ge1\Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\\ \Leftrightarrow2\sqrt{2x-1}=2\\ \Leftrightarrow2x-1=1\\ \Leftrightarrow x=1\left(T/m\right)\)

Với \(x< 1\Leftrightarrow\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

\(\Leftrightarrow0x=0\left(Nghiệm\text{ }đúng\text{ }\forall x\right)\\ \Leftrightarrow x< 1\)

Vậy pt có nghiệm \(x\le1\)

Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 22:34

ĐKXĐ: \(0\le x\le5\)

Pt tương đương:

\(\sqrt{x+3}+4\sqrt{x}+\sqrt{5-x}=2x+6\)

Ta có:

\(VT=\dfrac{1}{2}.2.\sqrt{x+3}+4.1.\sqrt{x}+\dfrac{1}{2}.2.\sqrt{5-x}\)

\(VT\le\dfrac{1}{4}\left(4+x+3\right)+2\left(1+x\right)+\dfrac{1}{4}\left(4+5-x\right)\)

\(\Rightarrow VT\le2x+6=VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=1\\\sqrt{5-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:59

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:03

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:13

d/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)

TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

\(\Leftrightarrow x=13\)

TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)

TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)

\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow4=4\) (luôn đúng)

TH4: \(\frac{1}{2}\le x< 1\)

\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)

Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)

Khách vãng lai đã xóa
Nhật Hạ
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)