Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải pt:
\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)
Giải pt
a )\(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\)
b) \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
c) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
Giải pt:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x^2+4x+4}+|x-4|=0\)
c. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
d. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
e. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
g.\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
h. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)