Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 lúc 20:43

ĐKXĐ: \(cosx\ne-\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{5\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(pt\Rightarrow3-\left(1-2sin^2x\right)+2sinx.cosx-5sinx-cosx=0\)

\(\Leftrightarrow2sin^2x-5sinx+2+cosx\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)+cosx\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=2\left(vn\right)\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Loại nghiệm

\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)

\(0\le\dfrac{\pi}{6}+k2\pi\le2022\pi\Rightarrow0\le k\le1010\)

\(\Rightarrow\sum x=1011.\dfrac{\pi}{6}+2\pi\left(0+1+2+...+1010\right)=\dfrac{1011\pi}{6}+2\pi.\dfrac{1010.1011}{2}=...\)

tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 16:51

1.

\(\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+k\pi\\x=-\frac{7\pi}{24}+k\pi\end{matrix}\right.\)

2.

\(2\left(1-cosx\right)-3\sqrt{3}sinx-\left(1+cosx\right)=4\)

\(\Leftrightarrow cosx+\sqrt{3}sinx=-1\)

\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=-\frac{1}{2}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

Nguyễn Việt Lâm
27 tháng 9 2020 lúc 16:55

3.

\(4sinx.cosx-2sinx+1-2cosx=0\)

\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

4.

\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)

Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 16:57

5.

\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

6.

\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)

\(\Leftrightarrow14sin^2x-5sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Thiên Yết
Xem chi tiết
nhi nguyễn
Xem chi tiết
nhi nguyễn
10 tháng 1 2018 lúc 19:15

mọi người giúp với ạ... :)

Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 0:28

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

Hồng Phúc
1 tháng 6 2021 lúc 8:33

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 10 2020 lúc 20:30

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
15 tháng 10 2020 lúc 20:32

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm

Khách vãng lai đã xóa
Nguyễn Việt Lâm
15 tháng 10 2020 lúc 20:35

3.

\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)

\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)

\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)

Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm

Tài khoản bị khóa
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 22:47

ĐKXĐ: \(sinx\ne0\)

\(2cos^2x-3cosx+1=sinx-2sinx^2cosx+2cos^2x.sinx\)

\(\Leftrightarrow2cos^2x\left(1-sinx\right)+1-sinx-3cosx+2sin^2x.cosx=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(3-2sin^2x\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(1+2cos^2x\right)=0\)

\(\Leftrightarrow\left(1-sinx-cosx\right)\left(2cos^2x+1\right)=0\)

\(\Leftrightarrow sinx+cosx=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\left(ktm\right)\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Kiều Anh
28 tháng 9 2020 lúc 22:46

@Nguyễn Việt Lâm giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 14:43

a/ \(4cos^3x-3cosx-4\left(2cos^2x-1\right)+3cosx-4=0\)

\(\Leftrightarrow4cos^3x-8cos^2x=0\)

\(\Leftrightarrow4cos^2x\left(cosx-2\right)=0\)

\(\Leftrightarrow cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(0< \frac{\pi}{2}+k\pi< 14\Rightarrow-\frac{1}{2}< k< \frac{14-\frac{\pi}{2}}{\pi}\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{5\pi}{2};\frac{7\pi}{2}\right\}\)

b/ Bạn coi lại đề, cái ngoặc thứ 2 thiếu \(\left(2cos\left(???\right)+cosx\right)\)

c/ Bạn coi lại đề, có 2 số hạng \(cos2x\) xuất hiện ở vế trái, cấp 3 chắc ko ai cho kiểu vậy đâu, nếu đúng thế thì người ta cộng luôn thành \(2cos2x\) cho rồi

tanhuquynh
Xem chi tiết