\(50-\left[\left(50-2^3.5\right):2+3\right]\)
1. lim\(\dfrac{\left(n+2\right)^{50}.\left(n-3\right)^{80}}{\left(2n-1\right)^{40}.\left(3n-2\right)^{45}}\)
2. lim\(\dfrac{4^n}{2.3^n+4^n}\)
3. lim\(\dfrac{3^n-2.5^n}{7+3.5^n}\)
4. lim\(\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}\)
5. lim\(\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}\)
\(lim\dfrac{\left(n+2\right)^{50}\left(n-3\right)^{80}}{\left(2n-1\right)^{40}\left(3n-2\right)^{45}}=lim\dfrac{\left(1+\dfrac{2}{n^{50}}\right)\left(1-\dfrac{3}{n^{35}}\right)\left(n-3\right)^{45}}{\left(2-\dfrac{1}{n^{50}}\right)\left(3-\dfrac{2}{n^{45}}\right)}=+\infty\)
\(lim\dfrac{4^n}{2.3^n+4^n}=lim\dfrac{1}{2.\left(\dfrac{3}{4}\right)^n+1}=\dfrac{1}{0+1}=1\)
\(lim\dfrac{3^n-2.5^n}{7+3.5^n}=lim\dfrac{\left(\dfrac{3}{5}\right)^n-2}{\dfrac{7}{5^n}+3}=\dfrac{0-2}{0+3}=\dfrac{-2}{3}\)
\(lim\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}=lim\dfrac{\left(\dfrac{4}{25}\right)^n-\left(\dfrac{1}{5}\right)^n}{\left(\dfrac{2}{5}\right)^{2n}+3}=\dfrac{0-0}{0+3}=0\)
\(lim\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}=lim\dfrac{\left(\dfrac{-3}{5}\right)^n+1}{2.\left(-\dfrac{4}{5}\right)^n+1}=\dfrac{0+1}{0+1}=1\)
1.
Nhớ rằng \(\lim _{x\to \infty}\frac{1}{x}=0\) và \(\lim _{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\) với \(g(x)\neq 0; \lim_{x\to a}g(x)\neq 0\)
Do đó:
\(\lim_{n\to \infty}\frac{(n+2)^{50}.(n-3)^{80}}{(2n-1)^{40}.(3n-2)^{45}}=\lim_{n\to \infty}\frac{n^{130}(\frac{n+2}{n})^{50}.(\frac{n-3}{n})^{80}}{n^{85}(\frac{2n-1}{n})^{40}.(\frac{3n-2}{n})^{45}}\)
\(=\lim_{n\to \infty}\frac{n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}}{(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}}\)
\(=\frac{\lim_{n\to \infty}[n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}]}{\lim_{n\to \infty}[(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}]}\)
\(=\frac{\lim_{n\to \infty}n^{45}.1^{50}.1^{80}}{2^{40}.3^{45}}=\frac{\infty}{2^{40}.3^{45}}=\infty\)
2)
\(\lim_{n\to \infty}\frac{4^n}{2.3^n+4^n}=\lim_{n\to \infty}\frac{1}{\frac{2.3^n+4^n}{4^n}}=\lim_{n\to\infty}\frac{1}{2.(\frac{3}{4})^n+1}\)
\(=\frac{1}{\lim_{n\to \infty}[2.(\frac{3}{4})^n+1]}=\frac{1}{2.0+1}=1\)
3)
\(\lim_{n\to \infty}\frac{3^n-2.5^n}{7+3.5^n}=\lim_{n\to \infty}\frac{(\frac{3}{5})^n-2}{\frac{7}{5^n}+3}\)
\(=\frac{\lim_{n\to \infty}[(\frac{3}{5})^n-2]}{\lim_{n\to \infty}[\frac{7}{5^n}+3]}=\frac{0-2}{0+3}=\frac{-2}{3}\)
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)
Tính tổng :\(S=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+....+\frac{1}{50}.\left(1+2+3+4+....+50\right)\)
\(M=\left(100-1\right).\left(100-2^2\right).\left(100-3^2\right).....\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-10^2\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-100\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...0...\left(100-50^2\right)\)
\(M=0\)
Tính nhanh.
\(M = \left( {100 - 1} \right).\left( {100 - {2^2}} \right).\left( {100 - {3^2}} \right)...\left( {100 - {{50}^2}} \right)\)
Ta có:
\(\begin{array}{l}M = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...\left( {{{10}^2} - {{10}^2}} \right)..\,\,.\left( {100 - {{50}^2}} \right)\\ = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).... 0 ...\left( {100 - {{50}^2}} \right)\\ = 0\end{array}\)
Thực hiện phép tính:
C=\(-\dfrac{1}{3}\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-....-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
các bạn gúp mình với nha!
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)
Giải phương trình:
a,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
b,\(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
c,\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+3}\)
Giải phương trình:
a)\(\dfrac{x-49}{50}\)+\(\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
\(\Leftrightarrow\dfrac{x+14}{86}+1+\dfrac{x+15}{85}+1+\dfrac{x+16}{84}+1+\dfrac{x+17}{83}+1+\dfrac{x+116}{4}-4=0\)
\(\Leftrightarrow\dfrac{x+100}{86}+\dfrac{x+100}{85}+\dfrac{x+100}{84}+\dfrac{x+100}{83}+\dfrac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+100=0\).Do \(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\ne0\)
\(\Leftrightarrow x=-100\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\left(x^2+1\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+3\right)}+...+\dfrac{1}{\left(x^2+4\right)\left(x^2+5\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+2}+\dfrac{1}{x^2+2}-\dfrac{1}{x^2+3}+...+\dfrac{1}{x^2+4}-\dfrac{1}{x^2+5}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+5}=-1\)\(\Leftrightarrow\dfrac{4}{x^4+6x^2+5}=-1\)
\(\Leftrightarrow\dfrac{x^4+6x^2+9}{x^4+6x^2+5}=0\Leftrightarrow x^4+6x^2+9=0\)
\(\Leftrightarrow\left(x^2+3\right)^2>0\forall x\) (vô nghiệm)
\(\dfrac{-5}{2}\)-\(^{\left(0,01\right)^4}\).\(^{50^4}\)+\(\left(\dfrac{-3}{2}\right)^{20}\):\(\left(\dfrac{-3}{2}\right)^{18}\)
\(\left(-\dfrac{5}{2}\right)^{\left(0.01\right)^4\cdot50^4}+\left(-\dfrac{3}{2}\right)^{20}:\left(-\dfrac{3}{2}\right)^{18}\)
\(=\left(-\dfrac{5}{2}\right)^{1^4}+\left(-\dfrac{3}{2}\right)^2\)
\(=-\dfrac{5}{2}+\dfrac{9}{4}=\dfrac{9}{4}-\dfrac{10}{4}=-\dfrac{1}{4}\)
`-5/2-(0,01)^4 . 50^4+(-3/2)^20:(-3/2)^18`
`=-5/2-(0,01.50)^4+(-3/2)^2`
`=-5/2-(0,5)^4+9/4`
`=(-5/2+9/4)-0,065`
`=(-10/4+9/4)-13/200`
`=-1/4-13/200`
`=-50/200-13/200`
`=-63/200`