\(\sqrt{9a}\)\(\left(5-3\sqrt{a}\right)-5\left(3\sqrt{a}-5\right)\)
Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3
1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)
bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi
Tính
\(a.\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(b.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(c.\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\left(b>0;a\ne-\sqrt{b}\right)\)
\(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
b.
\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)
\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)
\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}=2\sqrt{10}\)
c.
\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}=\dfrac{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}{\sqrt{b}.\sqrt{b}}=\dfrac{a^2-b}{b}\)
bài 1 rút gọn
a \(A=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
b\(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
c\(C=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) d\(D=\sqrt{2+\sqrt{3}}+\sqrt{14-5\sqrt{3}}+\sqrt{2}\)
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
`d)D=\sqrt{2+sqrt3}+sqrt{14-5sqrt3}+sqrt2`
`=>sqrt2D=sqrt{4+2sqrt3}+sqrt{28-10sqrt3}+2`
`=>sqrt2D=sqrt{(sqrt3+1)^2}+sqrt{(5-sqrt3)^2}+2`
`=>sqrt2D=8`
`=>D=4sqrt2`
a. \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
b. \(3\left(2+\sqrt{x}\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
c. \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
d. \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
a: Ta có: \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
\(=x-3\sqrt{x}-5\sqrt{x}-15\)
\(=x-8\sqrt{x}-15\)
b: Ta có: \(3\left(\sqrt{x}+2\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
\(=3\sqrt{x}+6+2\sqrt{x}-x+6-3\sqrt{x}\)
\(=-x+2\sqrt{x}+12\)
c: Ta có: \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
\(=x-9-5\sqrt{x}+5\)
\(=x-5\sqrt{x}-4\)
d: Ta có: \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3\sqrt{x}-6-x+1\)
\(=-x+3\sqrt{x}-5\)
Bài 2:
a) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\) b) \(\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\) d) \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
e) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\) f) \(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
Hộ mk vs ạ
a)\(\sqrt{\left(3-2\sqrt{2}\right)^2}\) + \(\sqrt{\left(3+2\sqrt{2}\right)^2}\) = \(\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)\) =\(3-2\sqrt{2}+3+2\sqrt{2}\) =\(6\)
b)\(\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)=5-2\sqrt{6}-5-2\sqrt{6}\)\(=-4\sqrt{6}\)
c)\(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
d)\(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}=\sqrt{2}+1-5+\sqrt{2}=2\sqrt{2}-4\)
e)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)
f)\(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=3+\sqrt{2}-\sqrt{2}+1=4\)
a) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c) Ta có: \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=2\sqrt{5}\)
Tính:
\(a)A=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\\ b)\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
a, Ta có : \(A=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
=> \(A=3-\sqrt{5}+\sqrt{5}-2=1\)
b, Ta có : \(B=\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
=> \(B=\sqrt{2}\left(\sqrt{5}+1\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
=> \(B=\left(\sqrt{5}+1\right)\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}\)
=> \(B=\left(\sqrt{5}+1\right)\left(\sqrt{6-2\sqrt{5}}\right)\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
=> \(B=\left(\sqrt{5}+1\right)\left(\sqrt{5-2\sqrt{5}+1}\right)\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
=> \(B=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
=> \(B=\left(5-1\right)\sqrt{36-20}=4.\sqrt{16}=4.4=16\)
Tính
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\cdot\left(2\sqrt{3}+\sqrt{5}\right)\)
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=2^2-\left(\sqrt{3}\right)^2\)
\(=4-3=1\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)\)
\(=\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2\)
\(=12-5=7\)
a) (2 - √3)(2 + √3)
= 2² - (√3)²
= 4 - 3
= 1
b) (2√3 - √5)(2√3 + √5)
= (2√3)² - (√5)²
= 12 - 5
= 7
3/ rút gọn biểu thức
A=\(\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
\(A=a+2\sqrt{a}-3\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)
\(A=-7\)
Ta có: \(A=\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
\(=a-3\sqrt{a}+2\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)
\(=-7\)