Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 23:53

a: =>(x-1)(x-2)<=0

=>1<=x<=2

b: =>(x^2-1)(x^2-2)<=0

=>1<=x^2<=2

=>\(\left[{}\begin{matrix}1< =x< =\sqrt{2}\\-1>=x>=-\sqrt{2}\end{matrix}\right.\)

Nott mee
Xem chi tiết
Trần Đức Huy
2 tháng 2 2022 lúc 11:03

A\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)

             \(< =>\sqrt{x}-1\le0\left(do\sqrt{x}+4\ge0\right)\)

              \(< =>\sqrt{x}\le1< =>x\le1\)

Trần Đức Huy
2 tháng 2 2022 lúc 11:05

Với x\(\ge\)0

A≤0<=>x−1x+4≤0

             <=>x−1≤0(dox+4≥0)

              

Trần Đức Huy
2 tháng 2 2022 lúc 11:07

Với \(x\ge0\)

\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)

           \(< =>\sqrt{x-1}\le0\) (vì \(\sqrt{x}+4\ge0\))

           \(< =>x-1\le0< =>x\le1\)

Kết hợp với ĐKXĐ ta được \(0\le x\le1\)

Kimian Hajan Ruventaren
Xem chi tiết
Rimuru tempest
16 tháng 1 2021 lúc 12:52

a) \(2x-\dfrac{x-3}{5}-4x+1\le0\)

\(\Leftrightarrow10x-x+3-20x+5\le0\)

\(\Leftrightarrow-11x+8\le0\)

\(\Leftrightarrow x\ge\dfrac{8}{11}\)

\(\Rightarrow x\in\left(\dfrac{8}{11};+\infty\right)\)

b) \(\sqrt{x^2+2}\le x-1\)

\(\Leftrightarrow x^2+2\le x^2-2x+1\) \(\left(x-1\ge\sqrt{x^2+2}\ge\sqrt{2}\Rightarrow x\ge1+\sqrt{2}\right)\)

\(\Leftrightarrow x\le-\dfrac{1}{2}\)

\(\Rightarrow x\in\varnothing\)

c) \(\sqrt{x-1}+\sqrt{5-x}+\dfrac{1}{x-3}>\dfrac{1}{x-3}\) (\(x\in\left[1;5\right]\backslash\left\{3\right\}\))

\(\Leftrightarrow\sqrt{x-1}+\sqrt{5-x}>0\)

\(\Leftrightarrow4+2\sqrt{\left(x-1\right)\left(5-x\right)}>0\) ( luôn đúng )

vậy \(x\in\left[1;5\right]\backslash\left\{3\right\}\)

 

 

 

Chiều Xuân
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 23:28

=>\(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{5}< =0\)

=>\(\dfrac{5\sqrt{x}-3\sqrt{x}-3}{5\left(\sqrt{x}+1\right)}< =0\)

=>2căn x-3<=0

=>căn x<=3/2

=>0<=x<=9/4

q duc
Xem chi tiết
q duc
27 tháng 8 2023 lúc 12:15

giúp mình với

Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2021 lúc 19:29

ĐKXĐ: \(x\ge1\)

\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)

Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)

Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)

\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)

\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)

\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)

\(\Rightarrow-1< m\le\dfrac{1}{3}\)

Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 19:47

Chọn C

Lê Quang Thiên
Xem chi tiết
Tran Le Khanh Linh
18 tháng 4 2020 lúc 10:17

Câu 6:

\(\hept{\begin{cases}\frac{x+3}{2x-3}-\frac{x}{2x-1}\le0\\\sqrt{x^2+3}+3< 1\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2x^2-x+6x-3-2x^2+3x}{\left(2x-3\right)\left(2x-1\right)}\le0\\x^2+3< \left(1-3x\right)^2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}8x-3\le0\\x^2+3< 1-6x+9x^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-3\le0\\8x^2-6x-2< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{3}{8}\\\frac{-1}{4}x< x< \frac{1}{4}\end{cases}\Rightarrow}S\left(\frac{-1}{4};\frac{3}{8}\right)}\)

Khách vãng lai đã xóa
Nguyễn Tuấn Vinh
Xem chi tiết