Lời giải:
Với mọi $1\geq x\geq 0$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow E=\frac{5}{x+\sqrt{x}+1}\leq \frac{5}{1}=5$
Vậy $E_{\max}=5$ khi $x=0$
Lời giải:
Với mọi $1\geq x\geq 0$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow E=\frac{5}{x+\sqrt{x}+1}\leq \frac{5}{1}=5$
Vậy $E_{\max}=5$ khi $x=0$
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\). Tìm x để \(A\le0\)
Tìm giá trị nguyên của x để \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\le\dfrac{3}{5}\)
Tìm x để biểu thức P = \(A.B\le\dfrac{1}{x+3}\) (ĐK: \(x\ge0\), \(x\ne4\))
Có A=\(\dfrac{4}{5}\) B=\(\dfrac{1}{\sqrt{x}+1}\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) và B=\(\dfrac{6x+6\sqrt{x}-12}{x +5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}vớix\ge0;x\ne9\)
a) tính giá trị của A tại x=25
b)rút gọn để P=A.B
c) tìm tất cả giá trị nguyên của x để\(\sqrt{P}\le\dfrac{1}{2}\)
Giúp vớiii ạaa
Cho biểu thức A = \(\left(\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\) với x>0 x\(\ne\)1
a, rút gọn biểu thức b, tìm giá trị của x để A \(\le\dfrac{3}{\sqrt{x}}\)
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
Cho \(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
a) Rút gọn biểu thức P
b) CMR: Biểu thức P chỉ nhận đúng một giá trị nguyên với \(0\le x,x\ne1\)
c) Tính giá trị của P khi x là số tự nhiên thỏa mãn \(\dfrac{\left(x+3\right)\left(x+4\right)}{3x}\in N\)
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)