Cho a, b > 0
Tìm Min của A = a +\(\dfrac{1}{b\left(a-b\right)}\)
a,b,c>0
tìm Max \(P=\dfrac{1}{2\sqrt{a^2+b^2+1}}-\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
1. Cho a,b >0
Tìm min: Q= \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
2. Cho a,b,c >0 và a+b+c ≤ 1
Tìm min P=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)
\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho a,b >0 và \(a+b\le3\). Tìm min
\(K=\dfrac{1}{a^2+b^2-2\left(a+b\right)+2}+\dfrac{1}{ab-\left(a+b\right)+1}+4\left(ab-a-b\right)\)
Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)
tìm Min của A=\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{b^4}{\left(a-1\right)^3}\) biết a,b >1 và a+b≤4
Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)
\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)
Cộng vế:
\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)
\(\Rightarrow A\ge32\)
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)
\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)
Cộng vế:
\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)
\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)
\(A_{min}=32\) khi \(a=b=2\)
cho các số thực không âm a , b , c ( a khác b ) thỏa mãn (a+c)(b+c)=1
Tìm min A \(\dfrac{1}{\left(a-b\right)^2}\)+\(\dfrac{1}{\left(a+c\right)^2}\)+\(\dfrac{1}{\left(b+c\right)^2}\)
Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)
\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)
\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)
\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)
Cho:
\(A=\left(\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
Biết \(2\sqrt{a}-\sqrt{b}=4\sqrt{ab}\). Tìm min A
Cho \(a,b>0;ab=1\) . Tìm Min \(P=\dfrac{\left(a+b-1\right)\left(a^2+b^2\right)}{a+b}\)
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Cho a, b, c là các số dương thỏa mãn abc=1. Tìm min của : \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\)
\(=\frac{\left(\frac{1}{a}\right)^2}{a(b+c)}+\frac{\left(\frac{1}{b}\right)^2}{b(a+c)}+\frac{\left(\frac{1}{c}\right)^2}{c(a+b)}\)
\(\geq \frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{a(b+c)+b(a+c)+c(a+b)}=\frac{(ab+bc+ac)^2}{2(ab+bc+ac)}=\frac{ab+bc+ac}{2}\) (thay $1=abc$)
Mà theo BĐT AM-GM:
\(ab+bc+ac\geq 3\sqrt[3]{(abc)^2}=3\). Do đó:
\(P\geq \frac{ab+bc+ac}{2}\geq \frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Cách khác:
Áp dụng BĐT AM-GM:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=\frac{1}{a}=\frac{abc}{a}=bc\)
Tương tự:
\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq ab\)
Cộng theo vế các BĐT trên ta có:
\(P+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)
\(\Rightarrow P\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{(abc)^2}}{2}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Cho a,b >0 và ab=1. tìm min của \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\)
☘ Áp dụng bất đửng thức AM - GM
\(\Rightarrow A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\)
\(\ge\left(a+b+1\right)\times2ab+\dfrac{4}{a+b}\)
\(=2\left(a+b+1\right)+\dfrac{4}{a+b}\)
\(=\left(a+b+\dfrac{4}{a+b}\right)+\left(a+b\right)+2\)
\(\ge4+2\sqrt{ab}+2=8\)
⚠ Tự kết luận nha.