1. a,b,c>0 và a+b+c=2017
\(CM:\Sigma\dfrac{2017a-a^2}{bc}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
2. cho x,y,z tm: \(x^2+y^2+z^2=3\)
\(CM:8\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)\)
3. a,b,c>0 và \(a^2+b^2+c^2\ge6\)
\(CM:\Sigma\dfrac{1}{1+ab}\ge\dfrac{3}{2}\)
1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)
\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)
2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)
Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)
+) Giải hệ pt: \(\left\{{}\begin{matrix}4\sqrt{x^2+4y-5}=y^2-x+10\\x^3+\left(1-y\right)x^2=\left(x+4\right)y\end{matrix}\right.\)
+) Cho a,b,c>0 và a+b+c=2017
CM: \(\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{ca}+\dfrac{2017c-c^2}{ab}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
Cho a,b,c là các số dương thỏa mãn a+b+c\(\ge\)6. Tìm min
\(P=\sqrt{a^2+\dfrac{1}{b+c}}+\sqrt{b^2+\dfrac{1}{a+c}}+\sqrt{c^2+\dfrac{1}{a+b}}\)
Cho a, b, c dương. Chứng minh rằng:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}-\sqrt[4]{3}\ge\dfrac{\sqrt[4]{243}}{2+abc}\)
cho a,b,c thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le16\left(a+b+c\right)\)
CMR:
\(\dfrac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\dfrac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\dfrac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\dfrac{8}{9}\)
Cho \(x,y,z>0\). CMR \(\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)
@Lia - Maths is fun !
\(Let:a,b,c\ge0\text{ }such:a+b+c=3.Found\text{ }max\text{ }and\text{ }min\text{ }A=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}\)
My solution !
*Found max
Using Bunhiacopxki we have
\(A^2\le\left(a+3+b+3+c+3\right)\left(1+1+1\right)=...=36\)
\(\Rightarrow A\le6\left(Because\:\text{ }\text{ }A\ge0\text{ }so\text{ }A\text{ }can't\text{ }< 0\text{ }\right)\)
\(A_{max}=6\text{ }\Leftrightarrow a=b=c=1\)
*Found min
We have extra inequality \(\sqrt{x+z}+\sqrt{y+z}\ge\sqrt{z}+\sqrt{x+y+z}\left(x;y;z\ge0\right)\)(1)
Prove : \(\left(1\right)\Leftrightarrow x+y+2z+2\sqrt{\left(x+z\right)\left(y+z\right)}\ge z+x+y+z+2\sqrt{z\left(x+y+z\right)}\)
\(\Leftrightarrow\sqrt{xy+xz+yz+z^2}\ge\sqrt{xz+yz+z^2}\)
\(\Leftrightarrow xy+xz+yz+z^2\ge xz+yz+z^2\)
\(\Leftrightarrow xy\ge0\left(True!\right)\)
Using (1) we have
\(A=\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\ge\sqrt{3}+\sqrt{a+b+3}+\sqrt{c+3}\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{a+b+c}\)
\(=3\sqrt{3}\)
\(A_{min}=3\sqrt{3}\text{ }when\text{ }\hept{\begin{cases}a=b=\frac{3}{2}\\c=0\end{cases}}\)
(In here I using when because there are many other a,b,c such a = 0 ; b = c = 3/2)
The problem is done !
Cho a,b,c>0 và ab+bc+ca=8
Tìm min \(A=3\left(a^2+b^2+c^2\right)+\dfrac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^2}\)