Cho a,b >0 tm 4a^2+b^2+ab=1
Tìm min của P=\(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2:\left[\frac{a^2}{b^2}+\frac{b^2}{a^2}\left(\frac{a}{b}+\frac{b}{a}\right)\right]\)
a) Cho a,b>0, a+b=<1.Tìm Min của A = \(^{\left(a+\frac{1}{a}\right)^2}\)+ \(^{\left(b+\frac{1}{b}\right)^2}\)
b) Cho a,b,c >0, a+b+c =<1,5. Tìm Min của B= \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
Bài 1: cho x khác 0, tìm Min \(T=8x^2-4x+\frac{1}{4x^2}+15\)
Bài 2: Cho a,b,c>0 và ab+bc+ca=3abc
Tìm Min: \(P=\frac{a^2}{c\left(c^2+a^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\)
Đề thi HSG đấy ạ!
\(1,Cho.a,b,c\ge1.CMR:\left(a-\dfrac{1}{b}\right)\left(b-\dfrac{1}{c}\right)\left(c-\dfrac{1}{a}\right)\ge\left(a-\dfrac{1}{a}\right)\left(b-\dfrac{1}{b}\right)\left(c-\dfrac{1}{c}\right)\)
2, Cho a,b,c>0.CMR:
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ac+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
CMR:
a,\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{2}\)
b,Cho a+b=1,a>0,b>0 CMR:\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)\(\ge9\)
a) \(a^2+b^2=1\)
Tìm min/max F = \(\dfrac{a}{b+2}\)
b)\(2a^2-2ab+5b^2=1\)
Tìm min/max G = \(\dfrac{\left(a+b\right)}{a-2b+2}\)
Cho a,b,c là các số thỏa mãn \(\left(a+1\right)^2+\left(b+2\right)^2+\left(c+3\right)^2\le2010\)
Tìm Min: A= ab+b(c-1)+c(a-2)
cho a,b,c là các số thỏa mãn \(\left(a+1\right)^2+\left(b+2\right)^2+\left(c+3\right)^2\le2010\). Tìm min
\(A=ab+b\left(c-1\right)+c\left(a-2\right)\)
Cho a,b,c >0 ; ab+bc+ca=3. Tìm min
\(M=\left(a^4+2\right)\left(b^4+2\right)\left(c^4+2\right)\)