\(\dfrac{3x}{-9}\) = \(\dfrac{2}{6}\)
thực hiện phép tính
a, \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}\)
b, \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)
a: \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}=\dfrac{x^2+4x+4}{3x+6}=\dfrac{x+2}{3}\)
b: \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)
\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\)
=0
k) 8 - \(\dfrac{x-2}{2}\) = \(\dfrac{x}{4}\)
m) \(\dfrac{3x+2}{2}\) - \(\dfrac{3x+1}{6}\) = 2x + \(\dfrac{5}{3}\)
n) \(\dfrac{x+1}{7}\)+ \(\dfrac{x+2}{6}\) = \(\dfrac{x+3}{5}\) + \(\dfrac{x+4}{4}\)
o) \(\dfrac{x+5}{6}\) + \(\dfrac{x+6}{5}\) = x + 9
\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)
k/
\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)
\(\Leftrightarrow96-4x+8=3x\)
\(\Leftrightarrow96-4x+8-3x=0\)
\(\Leftrightarrow104-7x=0\)
\(\Leftrightarrow7x=104\)
\(\Leftrightarrow x=104:7\)
\(\Leftrightarrow x=\dfrac{104}{7}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)
m/
\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1-12x-10=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)
k) Ta có: \(8-\dfrac{x-2}{2}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{32}{4}-\dfrac{2\left(x-2\right)}{4}=\dfrac{x}{4}\)
\(\Leftrightarrow32-2x+4-x=0\)
\(\Leftrightarrow28-x=0\)
hay x=28
Vậy: S={28}
m) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow6x+5-12x-10=0\)
\(\Leftrightarrow-6x=5\)
hay \(x=-\dfrac{5}{6}\)
Vậy: \(S=\left\{-\dfrac{5}{6}\right\}\)
n) Ta có: \(\dfrac{x+1}{7}+\dfrac{x+2}{6}=\dfrac{x+3}{5}+\dfrac{x+4}{4}\)
\(\Leftrightarrow\dfrac{x+1}{7}+1+\dfrac{x+2}{6}+1=\dfrac{x+3}{5}+1+\dfrac{x+4}{4}+1\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}=\dfrac{x+8}{5}+\dfrac{x+8}{4}\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}-\dfrac{x+8}{5}-\dfrac{x+8}{4}=0\)
\(\Leftrightarrow\left(x+8\right)\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)
mà \(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\ne0\)
nên x+8=0
hay x=-8
Vậy: S={-8}
thực hiện phép tính
\(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)
\(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)
\(\dfrac{6}{x-3}-\dfrac{2x-16}{x^2-9}-\dfrac{4}{x+3}\)
a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)
\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)
\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)
\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)
\(=\dfrac{13-x}{x}\)
c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)
\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
tìm x,y thỏa mãn: \(\dfrac{3x+2}{3}\)=\(\dfrac{3x+2y-4}{6x}\)=\(\dfrac{2y-6}{9}\)
Từ tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{3}=\dfrac{2y-6}{9}=\dfrac{\left(3x+2\right)+\left(2y-6\right)}{3+9}=\dfrac{3x+2y-4}{12}=\dfrac{3x+2y-4}{6x}\)
Suy ra 6x = 12 <=> x = 12 : 6 = 2
Khi đó \(\dfrac{3x+2}{3}=\dfrac{3\cdot2+2}{3}=\dfrac{8}{3}\)
Suy ra \(\dfrac{2y-6}{9}=\dfrac{8}{3}\Leftrightarrow2y-6=\dfrac{8\cdot9}{3}=24\)
\(\Leftrightarrow2y=24+6=30\Leftrightarrow y=30:2=15\)
Vậy x = 2; y = 15
a,\(\dfrac{7}{8}\)x\(\dfrac{2}{5}\)
b,\(\dfrac{9}{4}\)\(-\)\(\dfrac{5}{6}\)
c,\(\dfrac{4}{7}\)x\(\dfrac{2}{5}\)
d,\(\dfrac{3}{5}\)+2
e,4 \(-\) \(\dfrac{3}{5}\)
g,3x\(\dfrac{4}{9}\)
h,\(\dfrac{9}{5}\): 2
a. 7/8 x 2/5 =7/20
b.9/4-5/6=17/12
c.4/7x2/5=8/35
d.3/5+2=13/5
e. 4-3/5=17/5
g.3x4/9=4/3
h.9/5:2=9/10
a) \(\dfrac{14}{40}=\dfrac{7}{20}\)
b) \(\dfrac{27}{12}-\dfrac{10}{12}=\dfrac{17}{12}\)
c) \(\dfrac{8}{35}\)
d) \(\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
e) \(\dfrac{20}{5}-\dfrac{3}{5}=\dfrac{17}{5}\)
g) \(\dfrac{12}{9}=\dfrac{4}{3}\)
h) \(\dfrac{9}{5}x\dfrac{1}{2}=\dfrac{9}{10}\)
`@LQuyen`
\(\dfrac{7}{8}\times\dfrac{2}{5}=\dfrac{14}{40}\)
\(\dfrac{9}{4}-\dfrac{5}{6}=\dfrac{54}{24}-\dfrac{20}{24}=\dfrac{34}{24}\)
\(\dfrac{4}{7}\times\dfrac{2}{5}=\dfrac{8}{35}\)
\(\dfrac{3}{5}+\dfrac{2}{1}=\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
\(\dfrac{4}{1}-\dfrac{3}{5}=\dfrac{20}{5}-\dfrac{3}{5}=\dfrac{17}{5}\)
\(3\times\dfrac{4}{9}=\dfrac{12}{9}\)
\(\dfrac{9}{5}:2=\dfrac{9}{10}\)
1/ \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
2/ \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
3/ \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
4/ \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
5/ \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
\(\dfrac{7+3x}{9}\)\(+\)\(\dfrac{3}{2}\)\(=5\)\(-\dfrac{5-2x}{6}\)
\(\dfrac{7+3x}{9}+\dfrac{3}{2}=5-\dfrac{5-2x}{6}\\ \Leftrightarrow\dfrac{2\left(7+3x\right)}{18}+\dfrac{27}{18}-\dfrac{90}{18}+\dfrac{3\left(5-2x\right)}{18}=0\\ \Leftrightarrow14+6x+27-90+15-6x=0\\ \\ \Leftrightarrow-34=0\left(vô.lí\right)\)
\(\Leftrightarrow2\left(3x+7\right)+27=90-15\left(5-2x\right)\)
=>6x+14+27=90-75+30x
=>6x+41=30x+15
=>-24x=-26
hay x=13/12
\(\dfrac{7+3x}{9}+\dfrac{3}{2}=5-\dfrac{5-2x}{6}\\ \Leftrightarrow\dfrac{2\left(7+3x\right)}{18}+\dfrac{27}{18}=\dfrac{90}{18}-\dfrac{3\left(5-2x\right)}{18}\\ \Leftrightarrow14+6x+27=90-15+6x\\ \Leftrightarrow6x-6x=14+27-90+15\\ \Leftrightarrow0x=-34\left(vô.lí\right)\)
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)
bài 3giải các phương trình sau
b,\(\dfrac{2x}{3}=8\)
d,\(\dfrac{6}{5}x=-9\)
f,\(\dfrac{2-3x}{4}=\dfrac{4x-5}{5}\)
h,\(\dfrac{10-3x}{2}=\dfrac{6x+1}{3}\)
Lời giải:
b.
$\frac{2x}{3}=8$
$\Leftrightarrow 2x=3.8=24$
$\Leftrightarrow x=24:2=12$
d.
$\frac{6}{5}x=-9$
$\Leftrightarrow x=-9: \frac{6}{5}=\frac{-15}{2}$
f.
$\frac{2-3x}{4}=\frac{4x-5}{5}$
$\Leftrightarrow 5(2-3x)=4(4x-5)$
$\Leftrightarrow 10-15x=16x-20$
$\Leftrightarrow 30=31x$
$\Leftrightarrow x=\frac{30}{31}$
h.
$\frac{10-3x}{2}=\frac{6x+1}{3}$
$\Leftrightarrow 3(10-3x)=2(6x+1)$
$\Leftrightarrow 30-9x=12x+2$
$\Leftrightarrow 28=21x$
$\Leftrightarrow x=\frac{28}{21}=\frac{4}{3}$