Tính giá trị các biểu thức sau:
a) 5! + 6!
b) \(^{C^3_6+C^2_6}\)
c) \(^{A^3_2+A^5_4}\)
Giá trị của biểu thức A = \(\frac{1}{3}+\frac{1}{3_2}+\frac{1}{3_3}+.......+\frac{1}{3_6}\) là...........
tính giá trị lớn nhất và giá trị nhỏ nhất của các biểu thức sau:
a) A= 1-8x-x^2
b) B= 5-2x+x^2
c) C= x^2+4y^2-6x+8y-2021
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Tính giá trị các biểu thức sau:
a) \({\left( { - 5} \right)^{ - 1}}\);
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}}\);
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}}\).
a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)
b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)
c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)
\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)
\(=\dfrac{27\cdot4}{36}=3\)
Bài tập 2: Cho biết a + b = 6, a – b =4, a.b = 5. Không cần tìm ra a, b hãy tính các giá trị của các biểu thức sau:
a) A= x2+y2
b) B= x3+y3+xy
c) C= x2-y2
d) D= \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
e) E= \(\dfrac{x}{y}\)+\(\dfrac{y}{x}\)
chắc đề cho x,y chứ x+y=6,x-y=4,xy=5
(làm ra bạn tự thay số vào tính)
a,\(=>A=\left(x+y\right)^2-2xy=.....\)
b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)
c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)
d,\(=>D=\dfrac{x+y}{xy}=.....\)
e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=6^2-2\cdot5=26\)
b: \(B=x^3+y^3+xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)
\(=6^3-3\cdot5\cdot6+5\)
\(=216-90+5=131\)
c: \(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=4\cdot6=24\)
d: \(D=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{6}{5}\)
e: \(E=\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=\dfrac{6^2-2\cdot5}{5}=\dfrac{26}{5}\)
Tìm giá trị lớn nhất của các biểu thức sau:
a)A=-x2+5
b)B=-2(x-1)2+3
c)C=5-|3x-2|
a, \(A-x^2+5\le5\)Dấu ''='' xảy ra khi x = 0
b, \(B=-2\left(x-1\right)^2+3\le3\)Dấu ''='' xảy ra khi x =1
c, \(C=-\left|3x-2\right|+5\le5\)Dấu ''='' xảy ra khi x = 2/3
Tìm giá trị nhỏ nhất của các biểu thức sau:
A = \(x^2-4x+6\).
B = \(25x^2+10x-3\).
C = \(5-6x+4x^2\).
A= x2-4x+6 = (x-2)2+2 ≥ 2
Dấu "=" xảy ra ⇔ x=2
B = 25x2+10x-3 = (5x+1)2-4 ≥ -4
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5}\)
C = 5-6x+4x2 = \(\left(\dfrac{3}{2}-2x\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
A= 2x^2-4x+ 4+2
A=(x-2)2 + 2
A có giá trị nhỏ nhất khi (x-2)2 =0
x-2 =0
x=2
B, C tự làm :>
B=(5x)2+2.5.x-1-2
B=(5x-1)2-2
B có giá trị nhỏ nhất khi (5x-1)2=0
5x-1=0
x=1/5
C=(2x)2-2.3.x+9-4
C=(2x-3)2-4
C có giá trị nhỏ nhất khi (2x-3)2=0
2x-3=0
2x=3/2
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tính giá trị các biểu thức sau:
a) \(\sqrt[4]{{\frac{1}{{16}}}}\);
b) \({\left( {\sqrt[6]{8}} \right)^2}\);
c) \(\sqrt[4]{3}.\sqrt[4]{{27}}\).
a) \(\sqrt[4]{\dfrac{1}{16}}=\dfrac{1}{2}\)
b) \(\left(\sqrt[6]{8}\right)^2=\sqrt[\dfrac{6}{2}]{8}=\sqrt[3]{8}=2\)
c) \(\sqrt[4]{3}\cdot\sqrt[4]{27}=\sqrt[4]{3\cdot27}=\sqrt[4]{81}=3\)
Tính giá trị nhỏ nhất của các biểu thức sau:
a) A = 4x2 +4x + 11
b) C = x2 - 2x + y2 - 4y + 7
Lời giải:
a)
$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$
Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$
$\Leftrightarrow x=-\frac{1}{2}$
b)
$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$
$=(x-1)^2+(y-2)^2+2\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$
$\Leftrightarrow x=1; y=2$